# NOT RUN {
vec.x <- gen.logistic(mu = 3.55, iter = 2000)
x.range <- diff(range(vec.x))
from = 0.01 * x.range
by = 0.1 * x.range
# Output for each value of eps
res <- rqa.seq(vec.x, from = from, to = x.range, by = by, TS = vec.x, dim = 3, lag = 10)
# }
# NOT RUN {
# It is a good idea to get a grasp on how RQA develop for different colored noise.
if(requireNamespace(tuneR)){
pink <- tuneR::noise(kind = "pink", duration = 1000)@left
red <- tuneR::noise(kind = "red", duration = 1000)@left
power <- tuneR::noise(kind = "power", duration = 1000)@left
white <- tuneR::noise(kind = "white", duration = 1000)@left
start <- 0.001 * diff(range(TS))
end <- 1.0 * diff(range(TS))
step <- 0.01 * diff(range(TS))
rqa.pink <- Chaos01::rqa.seq(start, end, step, pink, dim, lag, theta, lmin)
rqa.red <- Chaos01::rqa.seq(start, end, step, red, dim, lag, theta, lmin)
rqa.power <- Chaos01::rqa.seq(start, end, step, power, dim, lag, theta, lmin)
rqa.white <- Chaos01::rqa.seq(start, end, step, white, dim, lag, theta, lmin)
plotvar <- c("RR", "RATIO", "DET", "LAM", "AVG", "TT", "MAX", "MAX_V")
par(mfrow = c(4,2))
plot(rqa.pink, plotvar)
plot(rqa.red, plotvar)
plot(rqa.power, plotvar)
plot(rqa.white, plotvar)
}
# }
Run the code above in your browser using DataLab