rsOptIC: Computation of the optimally robust IC for AL estimators
Description
The function rsOptIC
computes the optimally robust IC for
AL estimators in case of normal scale and (convex) contamination
neighborhoods. The definition of these estimators can be found
in Rieder (1994) or Kohl (2005), respectively.Usage
rsOptIC(r, mean = 0, sd = 1, bUp = 1000, delta = 1e-06, itmax = 100, computeIC = TRUE)
Arguments
r
non-negative real: neighborhood radius.
sd
specified standard deviation.
bUp
positive real: the upper end point of the
interval to be searched for the clipping bound b.
delta
the desired accuracy (convergence tolerance).
itmax
the maximum number of iterations.
computeIC
logical: should IC be computed. See details below.
Value
- If 'computeIC' is 'TRUE' an object of class
"ContIC"
is returned,
otherwise a list of Lagrange multipliers - Astandardizing constant
- acentering constant
- boptimal clipping bound
concept
- normal scale
- influence curve
Details
If 'computeIC' is 'FALSE' only the Lagrange multipliers 'A', 'a', and
'b' contained in the optimally robust IC are computed.References
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness.
Bayreuth: Dissertation.Examples
Run this codeIC1 <- rsOptIC(r = 0.1)
distrExOptions("ErelativeTolerance" = 1e-12)
checkIC(IC1)
distrExOptions("ErelativeTolerance" = .Machine$double.eps^0.25) # default
Risks(IC1)
cent(IC1)
clip(IC1)
stand(IC1)
plot(IC1)
Run the code above in your browser using DataLab