Usage
rsde1d(N, ...)
## S3 method for class 'default':
rsde1d(N = 100, M = 10, x0 = 0, t0 = 0, T = 1, Dt, tau = 0.5,
drift, diffusion, alpha = 0.5, mu = 0.5,type = c("ito", "str"),
method = c("euler", "milstein", "predcorr", "smilstein", "taylor",
"heun", "rk1", "rk2", "rk3"), ...)
## S3 method for class 'rsde1d':
summary(object, \dots)
## S3 method for class 'rsde1d':
mean(x, \dots)
## S3 method for class 'rsde1d':
median(x, \dots)
## S3 method for class 'rsde1d':
quantile(x, \dots)
## S3 method for class 'rsde1d':
kurtosis(x, \dots)
## S3 method for class 'rsde1d':
skewness(x, \dots)
## S3 method for class 'rsde1d':
moment(x, order = 2, \dots)
## S3 method for class 'rsde1d':
bconfint(x, level=0.95, \dots)Arguments
M
number of random numbers to be geneated.
x0
initial value of the process at time t0.
Dt
time step of the simulation (discretization). If it is missing a default $\Delta t = \frac{T-t_{0}}{N}$. tau
moment (time) between t0 and T. Random number generated at time=tau.
drift
drift coefficient: an expression of two variables t and x. diffusion
diffusion coefficient: an expression of two variables t and x. alpha
weight alpha of the predictor-corrector scheme; the default alpha = 0.5.
mu
weight mu of the predictor-corrector scheme; the default mu = 0.5.
type
sde of the type Ito or Stratonovich.
method
numerical methods of simulation, the default method = "euler"; see snssde1d. x, object
an object inheriting from class "rsde1d".
level
the confidence level required.
...
further arguments for (non-default) methods.