A Bayesian MCMC approach for estimation of the SAR model (spatial lag model) of the form:
$$Y = \rho W Y + X \beta + \epsilon$$
where Y is an Nx1 vector of the outcome variable, X is an NxK matrix of the independent variables and W is the weight matrix.
Usage
sar( X, y, W, burnin=5000, Nsim=10000 )
Arguments
X
matrix of independent variables
y
vector of outcome variable values
W
spatial weight matrix
burnin
Number of samples before start collecting points
Nsim
Total number of samples in MC
Value
a list with
Mbetasa vector with the mean values of the vector of the regression coefficients estimated
SDbetasa vector with the standard deviation of the vector of the regression coefficients estimated
MrhoMean values of the strength of the spatial interaction rho
SDrhoStandard deviation of rho
Msigma2eMean value of $\sigma^{2}_{e}$
SDsigma2eStandard deviation of $\sigma^{2}_{e}$
DICdeviance information criterion (DIC)
pdeffective number of parameters
Log_LikelihoodLog likelihood
R_Squaredpseudo R squared
impact_directDirect effect
impact_idirectIndirect effect
impact_totalTotal effect
References
Anselin, L. 1988 Spatial econometrics: methods and models.(Dordrecht: Kluwer);
Dong, D. and Harris, R. 2014. Spatial Autoregressive Models for Geographically Hierarchical Data Structures. Geographical Analysis, 1-19.