Learn R Programming

HSAR (version 0.3.6)

sar: SAR model estimation

Description

A Bayesian MCMC approach for estimation of the SAR model (spatial lag model) of the form: $$Y = \rho W Y + X \beta + \epsilon$$ where Y is an Nx1 vector of the outcome variable, X is an NxK matrix of the independent variables and W is the weight matrix.

Usage

sar( X, y, W, burnin=5000, Nsim=10000 )

Arguments

X
matrix of independent variables
y
vector of outcome variable values
W
spatial weight matrix
burnin
Number of samples before start collecting points
Nsim
Total number of samples in MC

Value

  • a list with
  • Mbetasa vector with the mean values of the vector of the regression coefficients estimated
  • SDbetasa vector with the standard deviation of the vector of the regression coefficients estimated
  • MrhoMean values of the strength of the spatial interaction rho
  • SDrhoStandard deviation of rho
  • Msigma2eMean value of $\sigma^{2}_{e}$
  • SDsigma2eStandard deviation of $\sigma^{2}_{e}$
  • DICdeviance information criterion (DIC)
  • pdeffective number of parameters
  • Log_LikelihoodLog likelihood
  • R_Squaredpseudo R squared
  • impact_directDirect effect
  • impact_idirectIndirect effect
  • impact_totalTotal effect

References

Anselin, L. 1988 Spatial econometrics: methods and models.(Dordrecht: Kluwer); Dong, D. and Harris, R. 2014. Spatial Autoregressive Models for Geographically Hierarchical Data Structures. Geographical Analysis, 1-19.

See Also

hsar

Examples

Run this code
data(land_prices)
result <- sar( X, y, W, 50, 100)
result$Mrho

Run the code above in your browser using DataLab