
Colour scales for continuous data default to the values of the `ggplot2.continuous.colour` and `ggplot2.continuous.fill` options. These [options()] default to `"gradient"` (i.e., [scale_colour_gradient()] and [scale_fill_gradient()])
scale_shadowcolour_continuous(
...,
type = getOption("ggplot2.continuous.colour", default = "gradient")
)scale_shadowcolour_binned(
...,
type = getOption("ggplot2.binned.colour", default =
getOption("ggplot2.continuous.colour", default = "gradient"))
)
a scale object to add to a plot.
Additional parameters passed on to the scale type
One of the following: * "gradient" (the default) * "viridis" * A function that returns a continuous colour scale.
Many color palettes derived from RGB combinations (like the "rainbow" color palette) are not suitable to support all viewers, especially those with color vision deficiencies. Using `viridis` type, which is perceptually uniform in both colour and black-and-white display is an easy option to ensure good perceptive properties of your visulizations. The colorspace package offers functionalities - to generate color palettes with good perceptive properties, - to analyse a given color palette, like emulating color blindness, - and to modify a given color palette for better perceptivity.
For more information on color vision deficiencies and suitable color choices see the [paper on the colorspace package](https://arxiv.org/abs/1903.06490) and references therein.
[scale_colour_gradient()], [scale_colour_viridis_c()], [scale_colour_steps()], [scale_colour_viridis_b()], [scale_fill_gradient()], [scale_fill_viridis_c()], [scale_fill_steps()], and [scale_fill_viridis_b()]
library( ggplot2 )
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_continuous() + guides(shadowcolour='none')
library( ggplot2 )
p <- ggplot(mtcars, aes(wt, mpg, shadowcolor=gear))
p + geom_shadowpoint() + scale_shadowcolour_binned() + guides(shadowcolour='none')
Run the code above in your browser using DataLab