Learn R Programming

ade4 (version 1.2-2)

sco.distri: Representation by mean- standard deviation of a set of weight distributions on a numeric score

Description

represents the mean- standard deviation of a set of weight distributions on a numeric score.

Usage

sco.distri(score, df, y.rank = TRUE, csize = 1, labels = names(df), clabel = 1,
    xlim = NULL, grid = TRUE, cgrid = 0.75,
    include.origin = TRUE, origin = 0, sub = NULL, csub = 1)

Arguments

score
a numeric vector
df
a data frame with only positive or null values
y.rank
a logical value indicating whether the means should be classified in ascending order
csize
an integer indicating the size segment
labels
a vector of strings of characters for the labels of the variables
clabel
if not NULL, a character size for the labels, used with par("cex")*clabel
xlim
the ranges to be encompassed by the x axis, if NULL they are computed
grid
a logical value indicating whether the scale vertical lines should be drawn
cgrid
a character size, parameter used with par("cex")*cgrid to indicate the mesh of the scale
include.origin
a logical value indicating whether the point "origin" should be belonged to the graph space
origin
the fixed point in the graph space, for example c(0,0) the origin axes
sub
a string of characters to be inserted as legend
csub
a character size for the legend, used with par("cex")*csub

Examples

Run this code
w <-seq(-1, 1, le = 200)
distri <- data.frame(lapply(1:50, 
    function(x) sample((200:1)) * ((w >= (-x/50)) & (w <= x/50)) ))
names(distri) <- paste("w", 1:50, sep = "")
par(mfrow = c(1,2))
sco.distri(w, distri, csi = 1.5)
sco.distri(w, distri, y.rank = FALSE, csi = 1.5)
par(mfrow = c(1,1))

data(rpjdl)
coa2 <- dudi.coa(rpjdl$fau, FALSE)
sco.distri(coa2$li[,1], rpjdl$fau, lab = rpjdl$frlab, clab = 0.8)

data(doubs)
par(mfrow = c(2,2))
poi.coa <- dudi.coa(doubs$poi, scann = FALSE)
sco.distri(poi.coa$l1[,1], doubs$poi)
poi.nsc <- dudi.nsc(doubs$poi, scann = FALSE)
sco.distri(poi.nsc$l1[,1], doubs$poi)
s.label(poi.coa$l1)
s.label(poi.nsc$l1)

data(rpjdl)
fau.coa <- dudi.coa(rpjdl$fau, scann = FALSE)
sco.distri(fau.coa$l1[,1], rpjdl$fau)
fau.nsc <- dudi.nsc(rpjdl$fau, scann = FALSE)
sco.distri(fau.nsc$l1[,1], rpjdl$fau)
s.label(fau.coa$l1)
s.label(fau.nsc$l1)

par(mfrow = c(1,1))

Run the code above in your browser using DataLab