Learn R Programming

CHRONOS (version 1.0.3)

scoreSubpathways: Evaluate subpathways using an interacting scorng scheme (IS) for each time point.

Description

Evaluate subpathways using an interacting scorng scheme (IS) for each time point.

Usage

scoreSubpathways(subpathways, filters, measures, parameters, miRNAinteractions)

Arguments

subpathways
filters
Named vector of filters used for subpathway evaluation. Values denote corresponding thresholds.
pvalue
Statistical evaluation
measures Structural and functional evaluation
subScore mRNA-mRNA interaction scoring
measures
Subpathway structural and functional aspects as returned from pathwayMeasures.
parameters
C,K,T parameters of scoring scheme.
miRNAinteractions
An edgelist of miRNA-mRNA interactions used to override downloaded interactions from miRecords.

Value

subpathways High ranking subpathways
subScores miRNA-subpathway scores
mRNAScores mRNA-mRNA scores for each subpathway and for each time point
miRNAsOverSubpathway High ranking miRNAs hitting each subpathway
pValues P-value of each subpathway

Details

...

References

Jethava, V., Bhattacharyya, C., Dubhashi, D., & Vemuri, G. N. (2011). Netgem: Network embedded temporal generative model for gene expression data. BMC bioinformatics, 12(1), 327.

Kim,Y. et al. (2011). Principal network analysis: identification of subnetworks representing major dynamics using gene expression data. Bioinformatics, 27(3), 391-398

Examples

Run this code

# Load extracted subpathways from toy data
load(system.file('extdata', 'Examples//data.RData', package='CHRONOS'))

# Import mRNA expressions
mRNAexpr <- importExpressions(data=mRNAexpr, type='mRNA', org='hsa')

# Score extracted linear subpathways
filters       <- c('subScore'=0.4)
linSubsScored <- scoreSubpathways(subpathways=linSubs, filters=filters)

Run the code above in your browser using DataLab