Last chance! 50% off unlimited learning
Sale ends in
These functions extract standard errors of model coefficients from objects returned by modeling functions.
se.coef (object, ...)
se.fixef (object)
se.ranef (object)# S4 method for lm
se.coef(object)
# S4 method for glm
se.coef(object)
# S4 method for merMod
se.coef(object)
se.coef
gives lists of standard errors for coef
,
se.fixef
gives a vector of standard errors for fixef
and
se.ranef
gives a list of standard errors for ranef
.
object of lm
, glm
and merMod
fit
other arguments
Andrew Gelman gelman@stat.columbia.edu; Yu-Sung Su suyusung@tsinghua.edu.cn
se.coef
extracts standard errors from objects
returned by modeling functions.
se.fixef
extracts standard errors of the fixed effects
from objects returned by lmer and glmer functions.
se.ranef
extracts standard errors of the random effects
from objects returned by lmer and glmer functions.
Andrew Gelman and Jennifer Hill. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
display
,
coef
,
sigma.hat
,
# Here's a simple example of a model of the form, y = a + bx + error,
# with 10 observations in each of 10 groups, and with both the
# intercept and the slope varying by group. First we set up the model and data.
group <- rep(1:10, rep(10,10))
mu.a <- 0
sigma.a <- 2
mu.b <- 3
sigma.b <- 4
rho <- 0
Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
sigma.y <- 1
ab <- mvrnorm (10, c(mu.a,mu.b), Sigma.ab)
a <- ab[,1]
b <- ab[,2]
#
x <- rnorm (100)
y1 <- rnorm (100, a[group] + b[group]*x, sigma.y)
y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
# lm fit
M1 <- lm (y1 ~ x)
se.coef (M1)
# glm fit
M2 <- glm (y2 ~ x)
se.coef (M2)
# lmer fit
M3 <- lmer (y1 ~ x + (1 + x |group))
se.coef (M3)
se.fixef (M3)
se.ranef (M3)
# glmer fit
M4 <- glmer (y2 ~ 1 + (0 + x |group), family=binomial(link="logit"))
se.coef (M4)
se.fixef (M4)
se.ranef (M4)
Run the code above in your browser using DataLab