## S3 method for class 'stanreg':
coef(object, ...)## S3 method for class 'stanreg':
confint(object, parm, level = 0.95, ...)
## S3 method for class 'stanreg':
fitted(object, ...)
## S3 method for class 'stanreg':
log_lik(object, newdata = NULL, ...)
## S3 method for class 'stanreg':
nobs(object, ...)
## S3 method for class 'stanreg':
residuals(object, ...)
## S3 method for class 'stanreg':
se(object, ...)
## S3 method for class 'stanreg':
update(object, formula., ..., evaluate = TRUE)
## S3 method for class 'stanreg':
vcov(object, correlation = FALSE, ...)
## S3 method for class 'stanreg':
fixef(object, ...)
## S3 method for class 'stanreg':
ngrps(object, ...)
## S3 method for class 'stanreg':
ranef(object, ...)
## S3 method for class 'stanreg':
sigma(object, ...)
## S3 method for class 'stanreg':
VarCorr(x, sigma = 1, ...)
stanreg-objects.update method. See
update.confint, an optional character vector of parameter
names.confint, a scalar between $0$ and $1$
indicating the confidence level to use.log_lik, an optional data frame of new data (e.g.
holdout data). See posterior_predict.update.vcov, if FALSE (the default) the
covariance matrix is returned. If TRUE, the correlation matrix is
returned instead.VarCorr).as.matrix.stanreg, plot.stanreg,
predict.stanreg, print.stanreg, and
summary.stanreg.posterior_interval and posterior_predict for
alternatives to confint and predict for models fit using MCMC
or variational approximation.