# ------------- Duncan, Haller and Portes peer-influences model ----------------------
# A nonrecursive SEM with unobserved endogenous variables and fixed exogenous variables
R.DHP <- matrix(c( # lower triangle of correlation matrix
1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
.6247, 1, 0, 0, 0, 0, 0, 0, 0, 0,
.3269, .3669, 1, 0, 0, 0, 0, 0, 0, 0,
.4216, .3275, .6404, 1, 0, 0, 0, 0, 0, 0,
.2137, .2742, .1124, .0839, 1, 0, 0, 0, 0, 0,
.4105, .4043, .2903, .2598, .1839, 1, 0, 0, 0, 0,
.3240, .4047, .3054, .2786, .0489, .2220, 1, 0, 0, 0,
.2930, .2407, .4105, .3607, .0186, .1861, .2707, 1, 0, 0,
.2995, .2863, .5191, .5007, .0782, .3355, .2302, .2950, 1, 0,
.0760, .0702, .2784, .1988, .1147, .1021, .0931, -.0438, .2087, 1
), ncol=10, byrow=TRUE)
# Fit the model using a symbolic ram specification
model.dhp <- matrix(c(
'RParAsp -> RGenAsp', 'gam11', NA,
'RIQ -> RGenAsp', 'gam12', NA,
'RSES -> RGenAsp', 'gam13', NA,
'FSES -> RGenAsp', 'gam14', NA,
'RSES -> FGenAsp', 'gam23', NA,
'FSES -> FGenAsp', 'gam24', NA,
'FIQ -> FGenAsp', 'gam25', NA,
'FParAsp -> FGenAsp', 'gam26', NA,
'FGenAsp -> RGenAsp', 'beta12', NA,
'RGenAsp -> FGenAsp', 'beta21', NA,
'RGenAsp -> ROccAsp', NA, 1,
'RGenAsp -> REdAsp', 'lam21', NA,
'FGenAsp -> FOccAsp', NA, 1,
'FGenAsp -> FEdAsp', 'lam42', NA,
'RGenAsp <-> RGenAsp', 'ps11', NA,
'FGenAsp <-> FGenAsp', 'ps22', NA,
'RGenAsp <-> FGenAsp', 'ps12', NA,
'ROccAsp <-> ROccAsp', 'theta1', NA,
'REdAsp <-> REdAsp', 'theta2', NA,
'FOccAsp <-> FOccAsp', 'theta3', NA,
'FEdAsp <-> FEdAsp', 'theta4', NA),
ncol=3, byrow=TRUE)
obs.vars.dhp <- c('ROccAsp', 'REdAsp', 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ',
'RSES', 'FSES', 'FIQ', 'FParAsp')
sem.dhp.1 <- sem(model.dhp, R.DHP, 329, obs.vars.dhp,
fixed.x=c('RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp'))
summary(sem.dhp.1)
## Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302
## Goodness-of-fit index = 0.98439
## Adjusted goodness-of-fit index = 0.94275
## RMSEA index = 0.048759 90 percent CI: (0.014516, 0.078314)
## BIC = -94.782
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.8010 -0.1180 0.0000 -0.0120 0.0398 1.5700
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp
## gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ
## gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES
## gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES
## gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES
## gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES
## gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ
## gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp
## beta12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp
## beta21 0.235458 0.119742 1.9664 4.9256e-02 FGenAsp <--- RGenAsp
## lam21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp
## lam42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp
## ps11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp
## ps22 0.263836 0.044902 5.8759 4.2067e-09 FGenAsp <--> FGenAsp
## ps12 -0.022601 0.051649 -0.4376 6.6168e-01 FGenAsp <--> RGenAsp
## theta1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp
## theta2 0.336148 0.053323 6.3040 2.9003e-10 REdAsp <--> REdAsp
## theta3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp
## theta4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp
##
## Iterations = 28
# Fit the model using a numerical ram specification
ram.dhp <- matrix(c(
# heads to from param start
1, 1, 11, 0, 1,
1, 2, 11, 1, NA, # lam21
1, 3, 12, 0, 1,
1, 4, 12, 2, NA, # lam42
1, 11, 5, 3, NA, # gam11
1, 11, 6, 4, NA, # gam12
1, 11, 7, 5, NA, # gam13
1, 11, 8, 6, NA, # gam14
1, 12, 7, 7, NA, # gam23
1, 12, 8, 8, NA, # gam24
1, 12, 9, 9, NA, # gam25
1, 12, 10, 10, NA, # gam26
1, 11, 12, 11, NA, # beta12
1, 12, 11, 12, NA, # beta21
2, 1, 1, 13, NA, # theta1
2, 2, 2, 14, NA, # theta2
2, 3, 3, 15, NA, # theta3
2, 4, 4, 16, NA, # theta4
2, 11, 11, 17, NA, # psi11
2, 12, 12, 18, NA, # psi22
2, 11, 12, 19, NA # psi12
), ncol=5, byrow=TRUE)
params.dhp <- c('lam21', 'lam42', 'gam11', 'gam12', 'gam13', 'gam14',
'gam23', 'gam24', 'gam25', 'gam26',
'beta12', 'beta21', 'theta1', 'theta2', 'theta3', 'theta4',
'psi11', 'psi22', 'psi12')
vars.dhp <- c('ROccAsp', 'REdAsp', 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ',
'RSES', 'FSES', 'FIQ', 'FParAsp', 'RGenAsp', 'FGenAsp')
sem.dhp.2 <- sem(ram.dhp, R.DHP, 329, params.dhp, vars.dhp, fixed.x=5:10)
summary(sem.dhp.2)
## Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302
## Goodness-of-fit index = 0.98439
## Adjusted goodness-of-fit index = 0.94275
## RMSEA index = 0.048759 90 percent CI: (0.014516, 0.078314)
## BIC = -94.782
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.01e-01 -1.18e-01 5.01e-16 -1.20e-02 3.98e-02 1.57e+00
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## lam21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp
## lam42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp
## gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp
## gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ
## gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES
## gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES
## gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES
## gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES
## gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ
## gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp
## beta12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp
## beta21 0.235458 0.119742 1.9664 4.9255e-02 FGenAsp <--- RGenAsp
## theta1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp
## theta2 0.336148 0.053323 6.3040 2.9002e-10 REdAsp <--> REdAsp
## theta3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp
## theta4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp
## psi11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp
## psi22 0.263836 0.044902 5.8759 4.2067e-09 FGenAsp <--> FGenAsp
## psi12 -0.022601 0.051649 -0.4376 6.6168e-01 RGenAsp <--> FGenAsp
##
## Iterations = 28
# -------------------- Wheaton et al. alienation data ----------------------
S.wh <- matrix(c(
11.834, 0, 0, 0, 0, 0,
6.947, 9.364, 0, 0, 0, 0,
6.819, 5.091, 12.532, 0, 0, 0,
4.783, 5.028, 7.495, 9.986, 0, 0,
-3.839, -3.889, -3.841, -3.625, 9.610, 0,
-21.899, -18.831, -21.748, -18.775, 35.522, 450.288),
6, 6)
# This is the model in the SAS manual for PROC CALIS: A Recursive SEM with
# latent endogenous and exogenous variables.
# Curiously, both factor loadings for two of the latent variables are fixed.
model.wh.1 <- matrix(c(
'Alienation67 -> Anomia67', NA, 1,
'Alienation67 -> Powerless67', NA, 0.833,
'Alienation71 -> Anomia71', NA, 1,
'Alienation71 -> Powerless71', NA, 0.833,
'SES -> Education', NA, 1,
'SES -> SEI', 'lamb', NA,
'SES -> Alienation67', 'gam1', NA,
'Alienation67 -> Alienation71', 'beta', NA,
'SES -> Alienation71', 'gam2', NA,
'Anomia67 <-> Anomia67', 'the1', NA,
'Anomia71 <-> Anomia71', 'the1', NA,
'Powerless67 <-> Powerless67', 'the2', NA,
'Powerless71 <-> Powerless71', 'the2', NA,
'Education <-> Education', 'the3', NA,
'SEI <-> SEI', 'the4', NA,
'Anomia67 <-> Anomia71', 'the5', NA,
'Powerless67 <-> Powerless71', 'the5', NA,
'Alienation67 <-> Alienation67', 'psi1', NA,
'Alienation71 <-> Alienation71', 'psi2', NA,
'SES <-> SES', 'phi', NA),
ncol=3, byrow=TRUE)
obs.vars.wh <- c('Anomia67','Powerless67','Anomia71','Powerless71','Education','SEI')
sem.wh.1 <- sem(model.wh.1, S.wh, 932, obs.vars.wh)
summary(sem.wh.1)
## Model Chisquare = 13.485 Df = 9 Pr(>Chisq) = 0.14186
## Goodness-of-fit index = 0.99527
## Adjusted goodness-of-fit index = 0.98896
## RMSEA index = 0.023136 90 percent CI: (0, 0.047004)
## BIC = -64.177
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.26000 -0.13100 0.00014 -0.02870 0.11400 0.87500
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## lamb 5.36880 0.433981 12.3710 0.0000e+00 SEI <--- SES
## gam1 -0.62994 0.056128 -11.2234 0.0000e+00 Alienation67 <--- SES
## beta 0.59312 0.046820 12.6680 0.0000e+00 Alienation71 <--- Alienation67
## gam2 -0.24086 0.055202 -4.3632 1.2817e-05 Alienation71 <--- SES
## the1 3.60787 0.200589 17.9864 0.0000e+00 Anomia67 <--> Anomia67
## the2 3.59494 0.165234 21.7567 0.0000e+00 Powerless67 <--> Powerless67
## the3 2.99366 0.498971 5.9997 1.9774e-09 Education <--> Education
## the4 259.57583 18.321111 14.1681 0.0000e+00 SEI <--> SEI
## the5 0.90579 0.121710 7.4422 9.9032e-14 Anomia71 <--> Anomia67
## psi1 5.67050 0.422906 13.4084 0.0000e+00 Alienation67 <--> Alienation67
## psi2 4.51481 0.334993 13.4773 0.0000e+00 Alienation71 <--> Alienation71
## phi 6.61632 0.639505 10.3460 0.0000e+00 SES <--> SES
##
## Iterations = 78
# The same model, but treating one loading for each latent variable as free.
model.wh.2 <- matrix(c(
'Alienation67 -> Anomia67', NA, 1,
'Alienation67 -> Powerless67', 'lamby', NA,
'Alienation71 -> Anomia71', NA, 1,
'Alienation71 -> Powerless71', 'lamby', NA,
'SES -> Education', NA, 1,
'SES -> SEI', 'lambx', NA,
'SES -> Alienation67', 'gam1', NA,
'Alienation67 -> Alienation71', 'beta', NA,
'SES -> Alienation71', 'gam2', NA,
'Anomia67 <-> Anomia67', 'the1', NA,
'Anomia71 <-> Anomia71', 'the1', NA,
'Powerless67 <-> Powerless67', 'the2', NA,
'Powerless71 <-> Powerless71', 'the2', NA,
'Education <-> Education', 'the3', NA,
'SEI <-> SEI', 'the4', NA,
'Anomia67 <-> Anomia71', 'the5', NA,
'Powerless67 <-> Powerless71', 'the5', NA,
'Alienation67 <-> Alienation67', 'psi1', NA,
'Alienation71 <-> Alienation71', 'psi2', NA,
'SES <-> SES', 'phi', NA),
ncol=3, byrow=TRUE)
sem.wh.2 <- sem(model.wh.2, S.wh, 932, obs.vars.wh)
summary(sem.wh.2)
## Model Chisquare = 12.673 Df = 8 Pr(>Chisq) = 0.12360
## Goodness-of-fit index = 0.99553
## Adjusted goodness-of-fit index = 0.98828
## RMSEA index = 0.025049 90 percent CI: (0, 0.049855)
## BIC = -56.36
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.998000 -0.140000 0.000296 -0.028800 0.100000 0.759000
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## lamby 0.86261 0.033383 25.8402 0.0000e+00 Powerless67 <--- Alienation67
## lambx 5.35302 0.432591 12.3743 0.0000e+00 SEI <--- SES
## gam1 -0.62129 0.056142 -11.0663 0.0000e+00 Alienation67 <--- SES
## beta 0.59428 0.047040 12.6335 0.0000e+00 Alienation71 <--- Alienation67
## gam2 -0.23580 0.054684 -4.3121 1.6173e-05 Alienation71 <--- SES
## the1 3.74499 0.249823 14.9906 0.0000e+00 Anomia67 <--> Anomia67
## the2 3.49378 0.200754 17.4033 0.0000e+00 Powerless67 <--> Powerless67
## the3 2.97409 0.499660 5.9522 2.6454e-09 Education <--> Education
## the4 260.13252 18.298132 14.2163 0.0000e+00 SEI <--> SEI
## the5 0.90377 0.121817 7.4191 1.1791e-13 Anomia71 <--> Anomia67
## psi1 5.47380 0.464073 11.7951 0.0000e+00 Alienation67 <--> Alienation67
## psi2 4.36410 0.362722 12.0315 0.0000e+00 Alienation71 <--> Alienation71
## phi 6.63576 0.640424 10.3615 0.0000e+00 SES <--> SES
##
## Iterations = 79
# ----------------------- Thurstone data ---------------------------------------
# Second-order confirmatory factor analysis, from the SAS manual for PROC CALIS
R.thur <- matrix(c(
1., 0, 0, 0, 0, 0, 0, 0, 0,
.828, 1., 0, 0, 0, 0, 0, 0, 0,
.776, .779, 1., 0, 0, 0, 0, 0, 0,
.439, .493, .460, 1., 0, 0, 0, 0, 0,
.432, .464, .425, .674, 1., 0, 0, 0, 0,
.447, .489, .443, .590, .541, 1., 0, 0, 0,
.447, .432, .401, .381, .402, .288, 1., 0, 0,
.541, .537, .534, .350, .367, .320, .555, 1., 0,
.380, .358, .359, .424, .446, .325, .598, .452, 1.
), ncol=9, byrow=TRUE)
model.thur <- matrix(c(
'F1 -> Sentences', 'lam11', NA,
'F1 -> Vocabulary', 'lam21', NA,
'F1 -> Sent.Completion', 'lam31', NA,
'F2 -> First.Letters', 'lam41', NA,
'F2 -> 4.Letter.Words', 'lam52', NA,
'F2 -> Suffixes', 'lam62', NA,
'F3 -> Letter.Series', 'lam73', NA,
'F3 -> Pedigrees', 'lam83', NA,
'F3 -> Letter.Group', 'lam93', NA,
'F4 -> F1', 'gam1', NA,
'F4 -> F2', 'gam2', NA,
'F4 -> F3', 'gam3', NA,
'Sentences <-> Sentences', 'th1', NA,
'Vocabulary <-> Vocabulary', 'th2', NA,
'Sent.Completion <-> Sent.Completion', 'th3', NA,
'First.Letters <-> First.Letters', 'th4', NA,
'4.Letter.Words <-> 4.Letter.Words', 'th5', NA,
'Suffixes <-> Suffixes', 'th6', NA,
'Letter.Series <-> Letter.Series', 'th7', NA,
'Pedigrees <-> Pedigrees', 'th8', NA,
'Letter.Group <-> Letter.Group', 'th9', NA,
'F1 <-> F1', NA, 1,
'F2 <-> F2', NA, 1,
'F3 <-> F3', NA, 1,
'F4 <-> F4', NA, 1),
ncol=3, byrow=TRUE)
obs.vars.thur <- c('Sentences','Vocabulary','Sent.Completion','First.Letters',
'4.Letter.Words','Suffixes','Letter.Series','Pedigrees',
'Letter.Group')
sem.thur <- sem(model.thur, R.thur, 213, obs.vars.thur)
summary(sem.thur)
## Model Chisquare = 38.196 Df = 24 Pr(>Chisq) = 0.033101
## Goodness-of-fit index = 0.95957
## Adjusted goodness-of-fit index = 0.9242
## RMSEA index = 0.052822 90 percent CI: (0.015262, 0.083058)
## BIC = -143.21
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -9.75e-01 -4.17e-01 -3.30e-06 4.02e-02 9.41e-02 1.63e+00
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## lam11 0.51512 0.064964 7.9293 2.2204e-15 Sentences <--- F1
## lam21 0.52031 0.065162 7.9849 1.3323e-15 Vocabulary <--- F1
## lam31 0.48743 0.062422 7.8087 5.7732e-15 Sent.Completion <--- F1
## lam41 0.52112 0.063137 8.2538 2.2204e-16 First.Letters <--- F2
## lam52 0.49707 0.059673 8.3298 0.0000e+00 4.Letter.Words <--- F2
## lam62 0.43806 0.056479 7.7562 8.6597e-15 Suffixes <--- F2
## lam73 0.45243 0.071371 6.3392 2.3101e-10 Letter.Series <--- F3
## lam83 0.41729 0.061037 6.8367 8.1022e-12 Pedigrees <--- F3
## lam93 0.40763 0.064524 6.3175 2.6584e-10 Letter.Group <--- F3
## gam1 1.44381 0.264173 5.4654 4.6185e-08 F1 <--- F4
## gam2 1.25383 0.216597 5.7888 7.0907e-09 F2 <--- F4
## gam3 1.40655 0.279332 5.0354 4.7682e-07 F3 <--- F4
## th1 0.18150 0.028400 6.3907 1.6517e-10 Sentences <--> Sentences
## th2 0.16493 0.027797 5.9334 2.9679e-09 Vocabulary <--> Vocabulary
## th3 0.26713 0.033468 7.9816 1.5543e-15 Sent.Completion <--> Sent.Completion
## th4 0.30150 0.050686 5.9484 2.7073e-09 First.Letters <--> First.Letters
## th5 0.36450 0.052358 6.9617 3.3620e-12 4.Letter.Words <--> 4.Letter.Words
## th6 0.50641 0.059963 8.4455 0.0000e+00 Suffixes <--> Suffixes
## th7 0.39033 0.061599 6.3367 2.3474e-10 Letter.Series <--> Letter.Series
## th8 0.48137 0.065388 7.3618 1.8141e-13 Pedigrees <--> Pedigrees
## th9 0.50510 0.065227 7.7437 9.5479e-15 Letter.Group <--> Letter.Group
##
## Iterations = 53
#------------------------- Kerchoff/Kenney path analysis ---------------------
# An observed-variable recursive SEM from the LISREL manual
R.kerch <- matrix(c(
1, 0, 0, 0, 0, 0, 0,
-.100, 1, 0, 0, 0, 0, 0,
.277, -.152, 1, 0, 0, 0, 0,
.250, -.108, .611, 1, 0, 0, 0,
.572, -.105, .294, .248, 1, 0, 0,
.489, -.213, .446, .410, .597, 1, 0,
.335, -.153, .303, .331, .478, .651, 1),
ncol=7, byrow=TRUE)
rownames(R.kerch) <- colnames(R.kerch) <- c('Intelligence','Siblings',
'FatherEd','FatherOcc','Grades','EducExp','OccupAsp')
model.kerch <- matrix(c(
'Intelligence -> Grades', 'gam51', NA,
'Siblings -> Grades', 'gam52', NA,
'FatherEd -> Grades', 'gam53', NA,
'FatherOcc -> Grades', 'gam54', NA,
'Intelligence -> EducExp', 'gam61', NA,
'Siblings -> EducExp', 'gam62', NA,
'FatherEd -> EducExp', 'gam63', NA,
'FatherOcc -> EducExp', 'gam64', NA,
'Grades -> EducExp', 'beta65', NA,
'Intelligence -> OccupAsp', 'gam71', NA,
'Siblings -> OccupAsp', 'gam72', NA,
'FatherEd -> OccupAsp', 'gam73', NA,
'FatherOcc -> OccupAsp', 'gam74', NA,
'Grades -> OccupAsp', 'beta75', NA,
'EducExp -> OccupAsp', 'beta76', NA,
'Grades <-> Grades', 'psi5', NA,
'EducExp <-> EducExp', 'psi6', NA,
'OccupAsp <-> OccupAsp', 'psi7', NA),
ncol=3, byrow=TRUE)
sem.kerch <- sem(model.kerch, R.kerch, 737, fixed.x=c('Intelligence','Siblings',
'FatherEd','FatherOcc'))
summary(sem.kerch)
## Model Chisquare = 6.537e-13 Df = 0 Pr(>Chisq) = NA
## Goodness-of-fit index = 1
## Adjusted goodness-of-fit index = NA
## RMSEA index = Inf 90 percent CI: (Inf, Inf)
## BIC = NA
##
## Normalized Residuals
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.52e-15 0.00e+00 3.75e-16 1.28e-15 1.49e-15 1.70e-14
##
## Parameter Estimates
## Estimate Std Error z value Pr(>|z|)
## gam51 0.525902 0.031182 16.86530 0.0000e+00 Grades <--- Intelligence
## gam52 -0.029942 0.030149 -0.99314 3.2064e-01 Grades <--- Siblings
## gam53 0.118966 0.038259 3.10951 1.8740e-03 Grades <--- FatherEd
## gam54 0.040603 0.037785 1.07456 2.8257e-01 Grades <--- FatherOcc
## gam61 0.160270 0.032710 4.89979 9.5940e-07 EducExp <--- Intelligence
## gam62 -0.111779 0.026876 -4.15899 3.1966e-05 EducExp <--- Siblings
## gam63 0.172719 0.034306 5.03461 4.7882e-07 EducExp <--- FatherEd
## gam64 0.151852 0.033688 4.50758 6.5571e-06 EducExp <--- FatherOcc
## beta65 0.405150 0.032838 12.33799 0.0000e+00 EducExp <--- Grades
## gam71 -0.039405 0.034500 -1.14215 2.5339e-01 OccupAsp <--- Intelligence
## gam72 -0.018825 0.028222 -0.66700 5.0477e-01 OccupAsp <--- Siblings
## gam73 -0.041333 0.036216 -1.14126 2.5376e-01 OccupAsp <--- FatherEd
## gam74 0.099577 0.035446 2.80924 4.9658e-03 OccupAsp <--- FatherOcc
## beta75 0.157912 0.037443 4.21738 2.4716e-05 OccupAsp <--- Grades
## beta76 0.549593 0.038260 14.36486 0.0000e+00 OccupAsp <--- EducExp
## psi5 0.650995 0.033946 19.17743 0.0000e+00 Grades <--> Grades
## psi6 0.516652 0.026943 19.17590 0.0000e+00 EducExp <--> EducExp
## psi7 0.556617 0.029026 19.17644 0.0000e+00 OccupAsp <--> OccupAsp
##
## Iterations = 0
Run the code above in your browser using DataLab