powered by
Set up Bayesian model priors and settings
set_options( type = c("Independent", "Conjugate", "Shrinkage", "Horseshoe"), NG = set_NG(), SNG = set_SNG(), HS = set_HS(), SAR = set_SAR(), SLX = set_SLX(), SEM = set_SEM(), SV = set_SV(), ... )
Character scalar with the prior type for the nested linear model.
Settings for the Normal-Gamma prior (independent or conjugate). See set_NG.
set_NG
Settings for the Normal-Gamma shrinkage prior (Polson and Scott, 2010). See set_NG.
Settings for the Horseshoe shrinkage prior (Makalic and Schmidt, 2015). See set_NG.
Settings for the spatial autoregressive setup. See set_SAR.
set_SAR
Settings for the spatially lagged explanatory setup. See set_SAR. Note that settings for the spatial term 'theta' are provided to NG instead.
Settings for the spatial error setup. See set_SAR.
Settings for the stochastic volatility setup. See set_SV.
set_SV
Used to provide custom prior elements.
Returns a list with priors and settings for a Bayesian model.
# NOT RUN { set_options("Shrinkage", SNG = set_SNG(lambda_a = 1, lambda_b = 1)) # }
Run the code above in your browser using DataLab