Last chance! 50% off unlimited learning
Sale ends in
A table-prep formula can be associated with an agent or informant with
set_read_fn()
. Should both a tbl
and a read_fn
be associated with the
agent or informant, the read_fn
will take priority. We can specify a
value for read_fn
with an RHS formula expression (e.g., ~ { <table reading code> }
). The table-prep formula can removed with remove_read_fn()
or
replaced with set_read_fn()
.
set_read_fn(x, read_fn)
An agent object of class ptblank_agent
, or, an informant of
class ptblank_informant
.
An R formula expression (e.g., ~ { <table reading code> }
)
that is used to prepare a table.
9-5
Other Object Ops:
activate_steps()
,
deactivate_steps()
,
remove_read_fn()
,
remove_steps()
,
remove_tbl()
,
set_tbl()
,
x_read_disk()
,
x_write_disk()
# NOT RUN {
# Set proportional failure thresholds
# to the `warn`, `stop`, and `notify`
# states using `action_levels()`
al <-
action_levels(
warn_at = 0.10,
stop_at = 0.25,
notify_at = 0.35
)
# Create an agent that reads in
# `small_table` with a table-prep
# formula; apply the actions,
# add some validation steps and then
# interrogate the data
agent_1 <-
create_agent(
read_fn = ~ small_table,
tbl_name = "small_table",
label = "An example.",
actions = al
) %>%
col_exists(vars(date, date_time)) %>%
col_vals_regex(
vars(b), "[0-9]-[a-z]{3}-[0-9]{3}"
) %>%
rows_distinct() %>%
interrogate()
# Change the table-prep formula to use
# a mutated version of `small_table`
# (one that removes duplicate rows);
# then, interrogate the target table
# again
agent_2 <-
agent_1 %>%
set_read_fn(
read_fn = ~ small_table %>% dplyr::distinct()
) %>%
interrogate()
# }
Run the code above in your browser using DataLab