Usage
# predefined spatial interaction functions
siaf.constant()
siaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL)
siaf.gaussian(nTypes = 1, logsd = TRUE, density = FALSE,
              F.adaptive = TRUE, effRangeMult = 6, validpars = NULL)
siaf.powerlaw(nTypes = 1, validpars = NULL)
siaf.powerlawL(nTypes = 1, validpars = NULL)
siaf.student(nTypes = 1, validpars = NULL)# predefined temporal interaction functions
tiaf.constant()
tiaf.step(knots, maxRange = Inf, nTypes = 1, validpars = NULL)
tiaf.exponential(nTypes = 1, validpars = NULL)
Arguments
knots
numeric vector of distances at which the step function
    switches to a new height. The length of this vector determines the
    number of parameters to estimate. For identifiability, the step
    function has height 1 in the first interval $[0,knots_1)$
maxRange
a scalar larger than any of knots.
    Per default (maxRange=Inf), the step function
    never drops to 0 but keeps the last height for any distance larger
    than the last knot. However, this might not work in some cases,
    w
nTypes
determines the number of parameters ((log-)scales or (log-)shapes)
    of the kernels. In a multitype epidemic, the different types may
    share the same spatial interaction function, in which case
    nTypes=1. Otherwise nTypes
logsd
logical indicating if the kernel should be parametrized
    with the log-standard deviation as the parameter in question to
    enforce positivity. This is the recommended default and avoids
    constrained optimisation (L-BFGS-B) or the use of
    
density
logical indicating if the density or just its kernel should be used.
    If density=TRUE, siaf.gaussian uses the density of the
    bivariate, isotropic normal distribution as the spatial interaction
    function. Otherwise (defa
F.adaptive
If F.adaptive = TRUE, then an adaptive bandwidth of
    adapt*sd will be used in the midpoint-cubature
    (polyCub.midpoint in package polyCub)
    of t effRangeMult
determines the effective range for numerical integration
    in terms of multiples of the standard deviation $\sigma$ of the
    Gaussian kernel, i.e. with effRangeMult=6 numerical
    integration only considers the $6 \sigma$ area around the
validpars
function taking one argument, the parameter vector, indicating if it
    is valid (see also siaf).
    If logsd=FALSE and one prefers not to use
    method="L-BFGS-B" for fitting the