Last chance! 50% off unlimited learning
Sale ends in
sigma(n, k = 1, proper = FALSE)tau(n)
TRUE
, n will not be considered
as a divisor of itself; default: FALSE.n
to the power of k
,
including 1
and n
. For k=0
this is the number of divisors, for k=1
it is the sum of all divisors of n
.
tau
is Ramanujan`s tau function, here computed using
sigma(., 5)
and sigma(., 11)
.
A number is called refactorable, if tau(n)
divides n
,
for example n=12
or n=18
.
http://en.wikipedia.org/wiki/Divisor_function
http://en.wikipedia.org/wiki/Tau-function
factorize
sapply(1:16, sigma, k = 0)
sapply(1:16, sigma, k = 1)
sapply(1:16, sigma, proper = TRUE)
stopifnot(identical(sapply(1:16, sigma, k = 0),
c(1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5)))
stopifnot(identical(sapply(1:16, sigma, k = 1),
c(1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31)))
stopifnot(identical(sapply(1:16, sigma, proper = TRUE),
c(0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15)))
stopifnot(all.equal(sapply(1:10, tau),
c(1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920)))
Run the code above in your browser using DataLab