# Create 40 observations of quarterly data using AAA model with errors from normal distribution
sim.es(model="AAA",frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100) -> ETS.AAA
# Create 50 series of quarterly data using AAA model
# with 40 observations each with errors from normal distribution
sim.es(model="AAA",frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100,nsim=50) -> ETS.AAA
# Create 50 series of quarterly data using AAdA model
# with 40 observations each with errors from normal distribution
# and smoothing parameters lying in the "admissible" range.
sim.es(model="AAA",phi=0.9,frequency=4,obs=40,bounds="admissible",
randomizer="rnorm",mean=0,sd=100,nsim=50) -> ETS.AAA
# Create 60 observations of monthly data using ANN model
# with errors from beta distribution
sim.es(model="ANN",persistence=c(1.5),frequency=12,obs=60,
randomizer="rbeta",sshape1=1.5,sshape2=1.5) -> ETS.ANN
plot(ETS.ANN$states)
# Create 60 observations of monthly data using MAM model
# with errors from uniform distribution
sim.es(model="MAM",persistence=c(0.3,0.2,0.1),initial=c(2000,50),
phi=0.8,frequency=12,obs=60,randomizer="runif",min=-0.5,max=0.5) -> ETS.MAM
# Create 80 observations of quarterly data using MMM model
# with predefined initial values and errors from the normal distribution
sim.es(model="MMM",persistence=c(0.1,0.1,0.1),initial=c(2000,1),
initialSeason=c(1.1,1.05,0.9,.95),frequency=4,obs=80,mean=0,sd=0.01) -> ETS.MMM
# Generate intermittent data using AAdN
sim.es("AAdN",frequency=1,obs=30,iprob=0.1,initial=c(3,0),phi=0.8) -> iETS.AAdN
Run the code above in your browser using DataLab