Last chance! 50% off unlimited learning
Sale ends in
source
for simulation details. Sample sizes were respectively 100 and 30
genotypes. The genotypes were given spatial coordinates so that both
populations were spatially differentiated.data(sim2pop)
sim2pop
is a genind object with a matrix of xy coordinates as
supplementary component.data(sim2pop)
if(require(hierfstat)){
## try and find the Fst
temp <- genind2hierfstat(sim2pop)
varcomp.glob(temp[,1],temp[,-1])
# Fst = 0.038
}
## run monmonier algorithm
# build connection network
gab <- chooseCN(sim2pop@other$xy,ask=FALSE,type=2)
# filter random noise
pca1 <- dudi.pca(sim2pop@tab,scale=FALSE, scannf=FALSE, nf=1)
# run the algorithm
mon1 <- monmonier(sim2pop@other$xy,dist(pca1$l1[,1]),gab,scanthres=FALSE)
# graphical display
temp <- sim2pop@pop
levels(temp) <- c(17,19)
temp <- as.numeric(as.character(temp))
plot(mon1)
points(sim2pop@other$xy,pch=temp,cex=2)
legend("topright",leg=c("Pop A", "Pop B"),pch=c(17,19))
Run the code above in your browser using DataLab