data(eusilcS)
## Not run:
# ## approx. 20 seconds computation time
# inp <- specifyInput(data=eusilcS, hhid="db030", hhsize="hsize",
# strata="db040", weight="db090")
# simPopObj <- simStructure(data=inp, method="direct",
# basicHHvars=c("age", "rb090", "hsize", "pl030", "pb220a"))
# simPopObj <- simContinuous(simPopObj, additional = "netIncome",
# regModel = ~rb090+hsize+pl030+pb220a+hsize,
# method="multinom", upper=200000, equidist=FALSE, nr_cpus=1)
#
# # categorize net income for use as conditioning variable
# sIncome <- manageSimPopObj(simPopObj, var="netIncome", sample=TRUE, set=FALSE)
# sWeight <- manageSimPopObj(simPopObj, var="rb050", sample=TRUE, set=FALSE)
# pIncome <- manageSimPopObj(simPopObj, var="netIncome", sample=FALSE, set=FALSE)
#
# breaks <- getBreaks(x=unlist(sIncome), w=unlist(sWeight), upper=Inf, equidist=FALSE)
# simPopObj <- manageSimPopObj(simPopObj, var="netIncomeCat", sample=TRUE,
# set=TRUE, values=getCat(x=unlist(sIncome), breaks))
# simPopObj <- manageSimPopObj(simPopObj, var="netIncomeCat", sample=FALSE,
# set=TRUE, values=getCat(x=unlist(pIncome), breaks))
#
# # simulate net income components
# simPopObj <- simComponents(simPopObj=simPopObj, total="netIncome",
# components=c("py010n","py050n","py090n","py100n","py110n","py120n","py130n","py140n"),
# conditional = c("netIncomeCat", "pl030"), replaceEmpty = "sequential", seed=1 )
#
# class(simPopObj)
# ## End(Not run)
Run the code above in your browser using DataLab