simE(parameters, n, seed = NULL, ...)
simV(parameters, n, seed = NULL, ...)
simEII(parameters, n, seed = NULL, ...)
simVII(parameters, n, seed = NULL, ...)
simEEI(parameters, n, seed = NULL, ...)
simVEI(parameters, n, seed = NULL, ...)
simEVI(parameters, n, seed = NULL, ...)
simVVI(parameters, n, seed = NULL, ...)
simEEE(parameters, n, seed = NULL, ...)
simEEV(parameters, n, seed = NULL, ...)
simVEV(parameters, n, seed = NULL, ...)
simVVV(parameters, n, seed = NULL, ...)
simEVE(parameters, n, seed = NULL, ...)
simEVV(parameters, n, seed = NULL, ...)
simVEE(parameters, n, seed = NULL, ...)
simVVE(parameters, n, seed = NULL, ...)
set.seed
for reproducible
random class assignment. By default the current seed will be used.
Reproducibility can also be achieved by calling set.seed
before calling sim
.do.call
.n
observations simulated from the specified MVN
mixture model."modelName"
A character string indicating the variance
model used for the simulation.do.call
, allowing the output of e.g. mstep
, em
me
, Mclust
, to be passed directly without the need
to specify individual parameters as arguments.sim
,
Mclust
,
mstepE
,
mclustVariance
.d <- 2
G <- 2
scale <- 1
shape <- c(1, 9)
O1 <- diag(2)
O2 <- diag(2)[,c(2,1)]
O <- array(cbind(O1,O2), c(2, 2, 2))
O
variance <- list(d= d, G = G, scale = scale, shape = shape, orientation = O)
mu <- matrix(0, d, G) ## center at the origin
simdat <- simEEV( n = 200,
parameters = list(pro=c(1,1),mean=mu,variance=variance),
seed = NULL)
cl <- simdat[,1]
sigma <- array(apply(O, 3, function(x,y) crossprod(x*y),
y = sqrt(scale*shape)), c(2,2,2))
paramList <- list(mu = mu, sigma = sigma)
coordProj( simdat, paramList = paramList, classification = cl)
Run the code above in your browser using DataLab