Last chance! 50% off unlimited learning
Sale ends in
Similarity
similarity(object, ...)# S4 method for CountMatrix
similarity(object, method = c("brainerd", "bray",
"jaccard", "morisita", "sorenson", "binomial"), ...)
# S4 method for IncidenceMatrix
similarity(object, method = c("jaccard",
"sorenson"), ...)
A
Further arguments to be passed to internal methods.
A character
string specifying the method to be
used (see details). Any unambiguous substring can be given.
similarity
returns a symmetric matrix of class
'>SimilarityMatrix.
Jaccard, Morisita-Horn and Sorenson indices provide a scale of similarity
from 0
-1
where 1
is perfect similarity and 0
is
no similarity. The Brainerd-Robinson index is scaled between 0
and
200
. The Binomial co-occurrence assessment approximates a Z-score.
Binomial co-occurrence assessment. This assesses the degree of co-occurrence between taxa/types within a dataset. The strongest associations are shown by large positive numbers, the strongest segregations by large negative numbers.
Brainerd-Robinson quantitative index. This is a city-block metric of similarity between pairs of samples/cases.
Sorenson quantitative index (Bray and Curtis modified version of the Sorenson index).
Jaccard qualitative index.
Morisita-Horn quantitative index.
Sorenson qualitative index.
Brainerd, G. W. (1951). The Place of Chronological Ordering in Archaeological Analysis. American Antiquity, 16(04), 301-313. DOI: 10.2307/276979.
Bray, J. R. & Curtis, J. T. (1957). An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecological Monographs, 27(4), 325-349. DOI: 10.2307/1942268.
Kintigh, K. (2006). Ceramic Dating and Type Associations. In J. Hantman and R. Most (eds.), Managing Archaeological Data: Essays in Honor of Sylvia W. Gaines. Anthropological Research Paper, 57. Tempe, AZ: Arizona State University, p. 17-26.
Magurran, A. E. (1988). Ecological Diversity and its Measurement. Princeton, NJ: Princeton University Press. DOI: 10.1007/978-94-015-7358-0.
Robinson, W. S. (1951). A Method for Chronologically Ordering Archaeological Deposits. American Antiquity, 16(04), 293-301. DOI: 10.2307/276978.
# NOT RUN {
# Data from Huntley 2008
ceramics <- CountMatrix(
data = c(16, 9, 3, 0, 1,
13, 3, 2, 0, 0,
9, 5, 2, 5, 0,
14, 12, 3, 0, 0,
0, 26, 4, 0, 0,
1, 26, 4, 0, 0,
0, 11, 3, 13, 0,
0, 0, 17, 0, 16,
0, 0, 18, 0, 14),
nrow = 9, byrow = TRUE,
dimnames = list(c("Atsinna", "Cienega", "Mirabal", "PdMuertos",
"Hesh", "LowPesc", "BoxS", "Ojo Bon", "S170"),
c("DLH-1", "DLH-2a", "DLH-2b", "DLH-2c", "DLH-4"))
)
# Brainerd-Robinson measure (count data)
C <- similarity(ceramics, "brainerd")
plot_spot(C)
# Data from Magurran 1988, p. 166
birds <- CountMatrix(
data = c(1.4, 4.3, 2.9, 8.6, 4.2, 15.7, 2.0, 50, 1, 11.4, 11.4, 4.3, 13.0,
14.3, 8.6, 7.1, 10.0, 1.4, 2.9, 5.7, 1.4, 11.4, 2.9, 4.3, 1.4, 2.9,
0, 0, 0, 2.9, 0, 0, 0, 10, 0, 0, 5.7, 2.5, 5.7, 8.6, 5.7, 2.9, 0, 0,
2.9, 0, 0, 5.7, 0, 2.9, 0, 2.9) * 10,
nrow = 2, byrow = TRUE, dimnames = list(c("unmanaged", "managed"), NULL)
)
# Jaccard measure (presence/absence data)
similarity(birds, "jaccard") # 0.46
# Sorenson measure (presence/absence data)
similarity(birds, "sorenson") # 0.63
# Jaccard measure (Bray's formula ; count data)
similarity(birds, "bray") # 0.44
# Morisita-Horn measure (count data)
similarity(birds, "morisita") # 0.81
# }
Run the code above in your browser using DataLab