Last chance! 50% off unlimited learning
Sale ends in
Use Simpson's 3/8 rule to integrate a function
simp38(f, a, b, m = 100)
function to integrate
the a-bound of integration
the b-bound of integration
the number of subintervals to calculate
the value of the integral
The simp38
function uses Simpson's 3/8 rule to calculate the
integral of the function f
over the interval from a
to b
. The parameter m
sets the number of intervals
to use when evaluating. Additional options are passed to the
function f
when evaluating.
Other integration:
adaptint()
,
gaussint()
,
giniquintile()
,
mcint()
,
midpt()
,
revolution-solid
,
romberg()
,
simp()
,
trap()
Other newton-cotes:
adaptint()
,
giniquintile()
,
midpt()
,
romberg()
,
simp()
,
trap()
# NOT RUN {
f <- function(x) { sin(x)^2 + log(x) }
simp38(f, 1, 10, m = 10)
simp38(f, 1, 10, m = 100)
simp38(f, 1, 10, m = 1000)
# }
Run the code above in your browser using DataLab