Learn R Programming

plsRglm (version 0.7.6)

simul_data_complete: Data generating detailed process for multivariate plsR models

Description

This function generates a single multivariate response value $\boldsymbol{Y}$ and a vector of explinatory variables $(X_1,\ldots,X_{totdim})$ drawn from a model with a given number of latent components.

Usage

simul_data_complete(totdim, ncomp)

Arguments

totdim
Number of columns of the X vector (from ncomp to hardware limits)
ncomp
Number of latent components in the model (from 2 to 6)

Value

  • simXVector of explanatory variables
  • HHDimension of the response $\boldsymbol{Y}$
  • etaSee Li et al.
  • rSee Li et al.
  • epsilonSee Li et al.
  • ksiSee Li et al.
  • fSee Li et al.
  • zSee Li et al.
  • YSee Li et al.

Details

This function should be combined with the replicate function to give rise to a larger dataset. The algorithm used is a Rport of the one describe in the article of Li which is a multivariate generalization of the algorithm of Naes and Martens.

References

T. Naes, H. Martens, Comparison of prediction methods for multicollinear data, Commun. Stat., Simul. 14 (1985) 545-576. http://dx.doi.org/10.1080/03610918508812458 Baibing Li, Julian Morris, Elaine B. Martin, Model selection for partial least squares regression, Chemometrics and Intelligent Laboratory Systems 64 (2002) 79-89. http://dx.doi.org/10.1016/S0169-7439(02)00051-5

See Also

simul_data_YX for data simulation purpose

Examples

Run this code
simul_data_complete(20,6)                          

dimX <- 6
Astar <- 2
simul_data_complete(dimX,Astar)


dimX <- 6
Astar <- 3
simul_data_complete(dimX,Astar)


dimX <- 6
Astar <- 4
simul_data_complete(dimX,Astar)

rm(list=c("dimX","Astar"))

Run the code above in your browser using DataLab