Calculates the skewness in the estimates of the parameters of a given model.
skewIPEC( expr, theta, x, y, tol = .Machine$double.eps, method = "Richardson",
method.args = list(eps = 1e-04, d = 0.11,
zero.tol = sqrt(.Machine$double.eps/7e-07), r = 6, v = 2,
show.details = FALSE), side = NULL )
A given parametric model
Vector of parameters of the model
Vector or matrix of observations of independent variable(s)
Vector of observations of response variable
The tolerance for detecting linear dependencies in the columns of a matrix for calculating its inverse.
See the input argument of tol
of the solve
function in package base
It is the same as the input argument of method
of the hessian
function in package numDeriv
It is the same as the input argument of method.args
of the hessian
function in package numDeriv
It is the same as the input argument of side
of the jacobian
function in package numDeriv
Calculated skewness
The defined model should have two input arguments: a parameter vector and an independent variable vector or matrix,
e.g. myfun <- function(P, x){...}
, where P
represents the parameter vector and x
represents the independent variable vector or matrix.
Let
Hougaard, P. (1985) The appropriateness of the asymptotic distribution in a nonlinear regression model in relation to curvature. J. R. Statist. Soc., Ser. B 47, 103-114.
Ratkowsky, D.A. (1990) Handbook of Nonlinear Regression Models, Marcel Dekker, New York.
derivIPEC
, hessian
in package numDeriv, jacobian
in package numDeriv
# NOT RUN {
#### Example 1 #################################################################################
# The velocity of the reaction (counts/min^2) under different substrate concentrations
# in parts per million (ppm) (Page 269 of Bates and Watts 1988)
x1 <- c(0.02, 0.02, 0.06, 0.06, 0.11, 0.11, 0.22, 0.22, 0.56, 0.56, 1.10, 1.10)
y1 <- c(76, 47, 97, 107, 123, 139, 159, 152, 191, 201, 207, 200)
# Define the Michaelis-Menten (MM) model
MM <- function(theta, x){
theta[1]*x / ( theta[2] + x )
}
par1 <- c(212.68490865, 0.06412421)
res5 <- skewIPEC( MM, theta=par1, x=x1, y=y1, tol= 1e-20 )
res5
#################################################################################################
#### Example 2 ##################################################################################
# Development data of female pupae of cotton bollworm (Wu et al. 2009)
# References:
# Ratkowsky, D.A. and Reddy, G.V.P. (2017) Empirical model with excellent statistical
# properties for describing temperature-dependent developmental rates of insects
# and mites. Ann. Entomol. Soc. Am. 110, 302-309.
# Wu, K.-J., Gong, P.-Y. and Ruan, Y.-M. (2009) Estimating developmental rates of
# Helicoverpa armigera (Lepidoptera: Noctuidae) pupae at constant and
# alternating temperature by nonlinear models. Acta Entomol. Sin. 52, 640-650.
# 'x2' is the vector of temperature (in degrees Celsius)
# 'D2' is the vector of developmental duration (in d)
# 'y2' is the vector of the square root of developmental rate (in 1/d)
x2 <- seq(15, 37, by=1)
D2 <- c(41.24,37.16,32.47,26.22,22.71,19.01,16.79,15.63,14.27,12.48,
11.3,10.56,9.69,9.14,8.24,8.02,7.43,7.27,7.35,7.49,7.63,7.9,10.03)
y2 <- 1/D2
y2 <- sqrt( y2 )
# Define the square root function of the Lobry-Rosso-Flandrois (LRF) model
sqrt.LRF <- function(P, x){
ropt <- P[1]
Topt <- P[2]
Tmin <- P[3]
Tmax <- P[4]
fun0 <- function(z){
z[z < Tmin] <- Tmin
z[z > Tmax] <- Tmax
return(z)
}
x <- fun0(x)
sqrt( ropt*(x-Tmax)*(x-Tmin)^2/((Topt-Tmin)*((Topt-Tmin
)*(x-Topt)-(Topt-Tmax)*(Topt+Tmin-2*x))) )
}
myfun <- sqrt.LRF
par2 <- c(0.1382926, 33.4575663, 5.5841244, 38.8282021)
# To calculate bias
resu5 <- skewIPEC( myfun, theta=par2, x=x2, y=y2, tol= 1e-20 )
resu5
#################################################################################################
#### Example 3 ##################################################################################
# Weight of cut grass data (Pattinson 1981)
# References:
# Clarke, G.P.Y. (1987) Approximate confidence limits for a parameter function in nonlinear
# regression. J. Am. Stat. Assoc. 82, 221-230.
# Gebremariam, B. (2014) Is nonlinear regression throwing you a curve?
# New diagnostic and inference tools in the NLIN Procedure. Paper SAS384-2014.
# http://support.sas.com/resources/papers/proceedings14/SAS384-2014.pdf
# Pattinson, N.B. (1981) Dry Matter Intake: An Estimate of the Animal
# Response to Herbage on Offer. unpublished M.Sc. thesis, University
# of Natal, Pietermaritzburg, South Africa, Department of Grassland Science.
# 'x4' is the vector of weeks after commencement of grazing in a pasture
# 'y4' is the vector of weight of cut grass from 10 randomly sited quadrants
x4 <- 1:13
y4 <- c(3.183, 3.059, 2.871, 2.622, 2.541, 2.184, 2.110, 2.075, 2.018, 1.903, 1.770, 1.762, 1.550)
# Define the first case of Mitscherlich equation
MitA <- function(P1, x){
P1[3] + P1[2]*exp(P1[1]*x)
}
# Define the second case of Mitscherlich equation
MitB <- function(P2, x){
log( P2[3] ) + exp(P2[2] + P2[1]*x)
}
# Define the third case of Mitscherlich equation
MitC <- function(P3, x, x1=1, x2=13){
theta1 <- P3[1]
beta2 <- P3[2]
beta3 <- P3[3]
theta2 <- (beta3 - beta2)/(exp(theta1*x2)-exp(theta1*x1))
theta3 <- beta2/(1-exp(theta1*(x1-x2))) - beta3/(exp(theta1*(x2-x1))-1)
theta3 + theta2*exp(theta1*x)
}
ini.val3 <- c(-0.1, 2.5, 1)
r0 <- fitIPEC( MitA, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
parA <- r0$par
parA
r5 <- skewIPEC(MitA, theta=parA, x=x4, y=y4, tol=1e-20)
r5
ini.val4 <- c(exp(-0.1), log(2.5), 1)
R0 <- fitIPEC( MitB, x=x4, y=y4, ini.val=ini.val3, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
parB <- R0$par
parB
R5 <- skewIPEC( MitB, theta=parB, x=x4, y=y4, tol=1e-20 )
R5
ini.val6 <- c(-0.15, 2.52, 1.09)
RES0 <- fitIPEC( MitC, x=x4, y=y4, ini.val=ini.val6, xlim=NULL, ylim=NULL,
fig.opt=TRUE, control=list(trace=FALSE, reltol=1e-20, maxit=50000) )
parC <- RES0$par
parC
RES5 <- skewIPEC( MitC, theta=parC, x=x4, y=y4, tol=1e-20 )
RES5
#################################################################################################
#### Example 4 ###################################################################################
# Data on biochemical oxygen demand (BOD; Marske 1967)
# References
# Pages 56, 255 and 271 in Bates and Watts (1988)
# Carr, N.L. (1960) Kinetics of catalytic isomerization of n-pentane. Ind. Eng. Chem.
# 52, 391-396.
data(isom)
Y <- isom[,1]
X <- isom[,2:4]
# There are three independent variables saved in matrix 'X' and one response variable (Y)
# The first column of 'X' is the vector of partial pressure of hydrogen
# The second column of 'X' is the vector of partial pressure of n-pentane
# The third column of 'X' is the vector of partial pressure of isopentane
# Y is the vector of experimental reaction rate (in 1/hr)
isom.fun <- function(theta, x){
x1 <- x[,1]
x2 <- x[,2]
x3 <- x[,3]
theta1 <- theta[1]
theta2 <- theta[2]
theta3 <- theta[3]
theta4 <- theta[4]
theta1*theta3*(x2-x3/1.632) / ( 1 + theta2*x1 + theta3*x2 + theta4*x3 )
}
par8 <- c(35.92831619, 0.07084811, 0.03772270, 0.16718384)
cons5 <- skewIPEC( isom.fun, theta=par8, x=X, y=Y, tol= 1e-20 )
cons5
#################################################################################################
# }
Run the code above in your browser using DataLab