Last chance! 50% off unlimited learning
Sale ends in
skewnormal(lshape = "identitylink", ishape = NULL, nsimEIM = NULL)
Links
and
CommonVGAMffArguments
."vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
The mean of the distribution is
$\mu=\alpha \sqrt{2/(\pi (1+\alpha^2))}$
and these are returned as the fitted values.
The variance of the distribution is $1-\mu^2$.
The Newton-Raphson algorithm is used unless the nsimEIM
argument is used.
Azzalini, A. and Capitanio, A. (1999) Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society, Series B, Methodological, 61, 579--602.
skewnorm
,
uninormal
,
foldnormal
.sdata <- data.frame(y1 = rskewnorm(nn <- 1000, shape = 5))
fit1 <- vglm(y1 ~ 1, skewnormal, data = sdata, trace = TRUE)
coef(fit1, matrix = TRUE)
head(fitted(fit1), 1)
with(sdata, mean(y1))
with(sdata, hist(y1, prob = TRUE))
x <- with(sdata, seq(min(y1), max(y1), len = 200))
with(sdata, lines(x, dskewnorm(x, shape = Coef(fit1)), col = "blue"))
sdata <- data.frame(x2 = runif(nn))
sdata <- transform(sdata, y2 = rskewnorm(nn, shape = 1 + 2*x2))
fit2 <- vglm(y2 ~ x2, skewnormal, data = sdata, trace = TRUE, crit = "coef")
summary(fit2)
Run the code above in your browser using DataLab