# NOT RUN {
library(tidyverse)
library(tidymodels)
library(caret)
library(SSLR)
data(wine)
set.seed(1)
train.index <- createDataPartition(wine$Wine, p = .7, list = FALSE)
train <- wine[ train.index,]
test <- wine[-train.index,]
cls <- which(colnames(wine) == "Wine")
#% LABELED
labeled.index <- createDataPartition(wine$Wine, p = .2, list = FALSE)
train[-labeled.index,cls] <- NA
m <- snnrce(x.inst = TRUE,
dist = "Euclidean",
alpha = 0.1) %>% fit(Wine ~ ., data = train)
predict(m,test) %>%
bind_cols(test) %>%
metrics(truth = "Wine", estimate = .pred_class)
# }
Run the code above in your browser using DataLab