## Not run:
# # Functional toy function: Arctangent temporal function (Auder, 2011)
# # X: input matrix (in [-7,7]^2)
# # q: number of discretization steps of [0,2pi] interval
# # output: vector of q values
#
# atantemp <- function(X, q = 100){
#
# n <- dim(X)[[1]]
# t <- (0:(q-1)) * (2*pi) / (q-1)
#
# res <- matrix(0,ncol=q,nrow=n)
# for (i in 1:n) res[i,] <- atan(X[i,1]) * cos(t) + atan(X[i,2]) * sin(t)
#
# return(res)
# }
#
# # Tests functional toy fct
#
# y0 <- atantemp(matrix(c(-7,0,7,-7,0,7),ncol=2))
# #plot(y0[1,],type="l")
# #apply(y0,1,lines)
#
# n <- 100
# X <- matrix(c(runif(2*n,-7,7)),ncol=2)
# y <- atantemp(X)
# x11()
# plot(y0[2,],ylim=c(-2,2),type="l")
# apply(y,1,lines)
#
# # Sobol indices computations
#
# n <- 1000
# X1 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
# X2 <- data.frame(matrix(runif(2*n,-7,7), nrow = n))
#
# x11()
# sa <- sobolMultOut(model=atantemp, q=100, X1, X2,
# MCmethod="soboljansen", plotFct=T)
# print(sa)
# x11()
# plot(sa)
#
# ## End(Not run)
Run the code above in your browser using DataLab