softmaxreg (version 1.2)

softmaxReg: Fit Multi-Layer Softmax Regression or Classification Model

Description

Fit softmax regression or classification model with multiple hidden layers neural networks and final softmax layer.

Usage

softmaxReg(x, ...)
"softmaxReg"(x, y, hidden = c(), funName = 'sigmoid', maxit = 3000, rang = 0.1, type = "class", algorithm = "rmsprop", rate = 0.05, L2 = FALSE, penalty = 1e-4, threshold = 1e-4, batch = 50,...)
"softmaxReg"(formula, data, hidden = c(), funName = 'sigmoid', maxit = 3000, rang = 0.1,type = "class", algorithm = "rmsprop", rate = 0.05, L2 = FALSE, penalty = 1e-4, threshold = 1e-4, batch = 50,...)
"predict"(object, newdata, ...)
"summary"(object, ...)

Arguments

formula
Formula of form y ~ x1 + x2 + ... for 'class' type classification; And (y1 + y2+ ...+ yk) ~ x1 + x2 + ... for 'raw' type regression.
x
Matrix or data frame of x input values.
y
Vector of target values y for 'class' type classfication and matrix or data frame of target values (y1,y2,...yk) for 'raw' type regression.
data
Data frame containing the variables in formula.
hidden
Numeric vector of integers specifying the number of hidden nodes in each layer, e.g. hidden = c(8,5,...). Default NULL.
funName
Name of neural network activation function, including 'sigmoid', 'tanh', 'relu'. Default 'sigmoid'.
maxit
Integer for maximum number of iterations. Default 3000.
rang
Parameter for the range of initial random weights [-rang, rang]. Default 0.1.
type
Parameter indicating the type of softmax task: 'class' denotes the softmax classfication model and the fitted values are factors; 'raw' denotes softmax regression model and the fitted values are raw probability or percentage data of each group. Default 'class'.
algorithm
Parameter indicating which gradient descenting learning algorithm to use, including 'sgd', 'adagrad', 'rmsprop', 'adadelta', 'momentum', 'nag'(Nesterov Momentum), etc. Default 'rmsprop'.
rate
Parameter for the initial learning rate. Default 0.05.
L2
Boolean variable indicating whether L2 regularization term is added to the loss function and gradient to prevent overfitting. Default FALSE.
penalty
Parameter for the penalty cost of the L2 regularization term if L2 is TRUE. Default 1e-4.
threshold
Parameter for the threshold of iteration convergence: loss value less than threshold. Default 1e-4.
batch
Parameter for mini-batch size. Default 50.
object
An object of class "softmax", the fitted model of softmaxReg function.
newdata
Matrix or dataframe of new Data for prediction.
...
Other arguments

Value

object of class "softmax"

Details

This function can be used to train typical n-class classification models. Also, it can be used to fit 'raw' data regression, e.g. the percentage/probability data of each group in the Multinomial Logit/Probit model, as well.

References

MNIST Dataset HandWritten Digit Recognition: http://yann.lecun.com/exdb/mnist/

MNIST Data Reading method reuse R code from: brendan o'connor - https://gist.github.com/brendano/39760

Reuter 50 DataSet: UCI Archived Dataset: http://archive.ics.uci.edu/ml/machine-learning-databases/00217/C50.zip

See Also

wordEmbed document loadURLData

Examples

Run this code
## Not run: 
# #### Example 1, Softmax classification with hidden layer and no regularization term
# 
# library(softmaxreg)
# data(iris)
# x = iris[,1:4]
# y = iris$Species
# # Training with hidden layer set 5 units
# softmax_model = softmaxReg(x, y, hidden = c(5), maxit = 100, type = "class",
#   algorithm = "adagrad", rate = 0.05, batch = 20)
# summary(softmax_model)
# yFitMat = softmax_model$fitted.values
# yFit = c()
# for (i in 1:length(y)) {
# 	yFit = c(yFit, which(yFitMat[i,]==max(yFitMat[i,])))
# }
# table(y, yFit)
# # Caculate AIC and BIC information criterion
# aic = AIC(softmax_model)
# bic = BIC(softmax_model)
# cat("AIC",aic,'\n')
# cat("BIC",bic,'\n')
# 
# # Make new Prediction
# newdata = iris[1:100,1:4]
# yPred = predict(softmax_model, newdata)
# 
# #### Example 2, Softmax classification with formula and dataframe input
# 
# f = formula(Species~.) # formula with succinct expression
# softmax_model_fm = softmaxReg(f, data = iris, hidden = c(5), maxit = 100, type = "class",
#   algorithm = "adagrad", rate = 0.05, batch = 20)
# summary(softmax_model_fm)
# 
# #### Example 3: Softmax classfication with L2 regularization
# 
# softmax_model_L2 = softmaxReg(x, y, hidden = c(5), maxit = 100, type = "class",
#   algorithm = "adagrad", L2 = TRUE, penalty = 1e-4, batch = 20)
# summary(softmax_model_L2)
# 
# # Compare Two Model Loss
# # Note L2 loss value include the ||W||^2 term, larger than loss of previous model
# loss1 = softmax_model$loss
# loss2 = softmax_model_L2$loss
# plot(c(1:length(loss1)), loss1, xlab = "Iteration", ylab = "Loss Function Value",
#   type = "l", col = "black")
# lines(c(1:length(loss2)), loss2, col = "red")
# legend("topright", c("Loss 1: No Regularization", "Loss 2: L2 Regularization"),
#   col = c("black", "red"),pch = 1)
# 
# 
# #### Example 4: Compare different learning algorithms 'adagrad','sgd',
# # 'rmsprop', 'momentum', 'nag' (Nesterov Momentum)
# 
# library(softmaxreg)
# data(iris)
# x = iris[,1:4]
# y = iris$Species
# model1 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 100, rang = 0.1,
#   type = "class", algorithm = "sgd", rate = 0.1, batch = 150)
# loss1 = model1$loss
# 
# model2 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 100, rang = 0.1,
#   type = "class", algorithm = "adagrad", rate = 0.1, batch = 150)
# loss2 = model2$loss
# 
# model3 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 100, rang = 0.1,
#   type = "class", algorithm = "rmsprop", rate = 0.1, batch = 150)
# loss3 = model3$loss
# 
# model4 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 100, rang = 0.1,
#   type = "class", algorithm = "momentum", rate = 0.1, batch = 150)
# loss4 = model4$loss
# 
# model5 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 100, rang = 0.1,
#   type = "class", algorithm = "nag", rate = 0.1, batch = 150)
# loss5 = model5$loss
# 
# # plot the loss convergence
# iteration = c(1:length(loss1))
# plot(iteration, loss1, xlab = "iteration", ylab = "loss", ylim = c(0,
#    max(loss1,loss2,loss3,loss4,loss5) + 0.01), type = "p", col = "black", cex = 0.7)
# title("Convergence Comparision Between Learning Algorithms")
# points(iteration, loss2, col = "red", pch = 2, cex = 0.7)
# points(iteration, loss3, col = "blue", pch = 3, cex = 0.7)
# points(iteration, loss4, col = "green", pch = 4, cex = 0.7)
# points(iteration, loss5, col = "magenta", pch = 5, cex = 0.7)
# 
# legend("topright", c("SGD", "Adagrad", "RMSprop", "Momentum", "NAG"),
#     col = c("black", "red", "blue", "green", "magenta"),pch = c(1,2,3,4,5))
# 
# ## Comments: From this experiments we can see that momemtum learning algorithm
# ## generally converge faster than the standard sgd and its variations
# 
# 
# #### Example 5: Multiple class classification: Read Online Dataset and make document classification
# 
# library(softmaxreg)
# data(word2vec) # default 20 dimension word2vec dataset
# #### Reuter 50 DataSet UCI Archived Dataset from
# ## URL: "http://archive.ics.uci.edu/ml/machine-learning-databases/00217/C50.zip"
# URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/00217/C50.zip"
# folder = getwd()
# loadURLData(URL, folder, unzip = TRUE)
# 
# ##Training Data
# subFoler = c('AaronPressman', 'AlanCrosby', 'AlexanderSmith', 'BenjaminKangLim', 'BernardHickey')
# docTrain = document(path = paste(folder, "\C50train\",subFoler, sep = ""), pattern = 'txt')
# xTrain = wordEmbed(docTrain, dictionary = word2vec)
# yTrain = c(rep(1,50), rep(2,50), rep(3,50), rep(4,50), rep(5,50))
# # Assign labels to 5 different authors
# 
# ##Testing Data
# docTest = document(path = paste(folder, "\C50test\",subFoler, sep = ""), pattern = 'txt')
# xTest = wordEmbed(docTest, dictionary = word2vec)
# yTest = c(rep(1,50), rep(2,50), rep(3,50), rep(4,50), rep(5,50))
# samp = sample(250, 50)
# xTest = xTest[samp,]
# yTest = yTest[samp]
# 
# ## Train Softmax Classification Model, 20-10-5
# softmax_model = softmaxReg(xTrain, yTrain, hidden = c(10), maxit = 500, type = "class",
#     algorithm = "nag", rate = 0.1, L2 = TRUE)
# summary(softmax_model)
# yFit = predict(softmax_model, newdata = xTrain)
# table(yTrain, yFit)
# 
# ## Testing
# yPred = predict(softmax_model, newdata = xTest)
# table(yTest, yPred)
# 
# #### Comments: Increase the word2vec dimensions to 50 or even 100 will help increase
# #### the capacity of the model and prediction precision
# 
# #### Example 6: 'MNIST' dataset HandWritten Digit Recognition
# ## Download MNIST Dataset from below URL and Gunzip them
# ## http://yann.lecun.com/exdb/mnist/
# ## MNIST Data Reading method reuse R code from:
# ## brendan o'connor - https://gist.github.com/brendano/39760
# 
# library(softmaxreg)
# # Replace with your local path
# path = "D:\DeepLearning\MNIST\"
# 
# ## 10-class classification, Digit 0-9
# x = load_image_file(paste(path,'train-images-idx3-ubyte', sep=""))
# y = load_label_file(paste(path,'train-labels-idx1-ubyte', sep=""))
# xTest = load_image_file(paste(path,'t10k-images-idx3-ubyte',sep=""))
# yTest = load_label_file(paste(path,'t10k-labels-idx1-ubyte', sep=""))
# 
# ## Normalize Input Data
# x = x/255
# xTest = xTest/255
# 
# ## Compare Convergence Rate of MNIST dataset
# model1 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 50, rang = 0.1,
#     type = "class", algorithm = "sgd", rate = 0.01, batch = 100)
# loss1 = model1$loss
# model2 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 50, rang = 0.1,
#     type = "class", algorithm = "adagrad", rate = 0.01, batch = 100)
# loss2 = model2$loss
# model3 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 50, rang = 0.1,
#     type = "class", algorithm = "rmsprop", rate = 0.01, batch = 100)
# loss3 = model3$loss
# model4 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 50, rang = 0.1,
#     type = "class", algorithm = "momentum", rate = 0.01, batch = 100)
# loss4 = model4$loss
# model5 = softmaxReg(x, y, hidden = c(), funName = 'sigmoid', maxit = 50, rang = 0.1,
#     type = "class", algorithm = "nag", rate = 0.01, batch = 100)
# loss5 = model5$loss
# 
# # plot the loss convergence
# iteration = c(1:length(loss1))
# myplot = plot(iteration, loss1, xlab = "iteration", ylab = "loss", ylim = c(0,
#     max(loss1,loss2,loss3,loss4,loss5) + 0.01), type = "p", col = "black", cex = 0.7)
# title("Convergence Comparision Between Learning Algorithms")
# points(iteration, loss2, col = "red", pch = 2, cex = 0.7)
# points(iteration, loss3, col = "blue", pch = 3, cex = 0.7)
# points(iteration, loss4, col = "green", pch = 4, cex = 0.7)
# points(iteration, loss5, col = "magenta", pch = 5, cex = 0.7)
# 
# legend("topright", c("SGD", "Adagrad", "RMSprop", "Momentum", "NAG"),
#     col = c("black", "red", "blue", "green", "magenta"),pch = c(1,2,3,4,5))
# 
# save.image()
# 
# ## End(Not run)

Run the code above in your browser using DataLab