# NOT RUN {
####=========================================####
#### For CRAN time limitations most lines in the 
#### examples are silenced with one '#' mark, 
#### remove them and run the examples
####=========================================####
####=========================================####
#### EXAMPLES
#### Different models with sommer
####=========================================####
data(example)
head(example)
####=========================================####
#### Univariate homogeneous variance models  ####
####=========================================####
## Compound simmetry (CS) model
ans1 <- mmer2(Yield~Env, 
              random= ~ Name + Env:Name,
              rcov= ~ units,
              data=example)
summary(ans1)
####===========================================####
#### Univariate heterogeneous variance models  ####
####===========================================####
## Compound simmetry (CS) + Diagonal (DIAG) model
ans2 <- mmer2(Yield~Env,
              random= ~Name + at(Env):Name,
              rcov= ~ at(Env):units,
              data=example)
summary(ans2)
####===========================================####
####  Univariate unstructured variance models  ####
####===========================================####
# ans3 <- mmer2(Yield~Env, 
#              random=~ us(Env):Name, 
#              rcov=~at(Env):units, data=example)
# summary(ans3)
# ####==========================================####
# #### Multivariate homogeneous variance models ####
# ####==========================================####
# 
# ## Multivariate Compound simmetry (CS) model
# ans4 <- mmer2(cbind(Yield, Weight) ~ Env, 
#               random= ~ us(trait):Name + us(trait):Env:Name,
#               rcov= ~ us(trait):units,
#               data=example)
# summary(ans4)
# 
# ####=============================================####
# #### Multivariate heterogeneous variance models  ####
# ####=============================================####
# 
# ## Multivariate Compound simmetry (CS) + Diagonal (DIAG) model
# ans5 <- mmer2(cbind(Yield, Weight) ~ Env, 
#               random= ~ us(trait):Name + us(trait):at(Env):Name,
#               rcov= ~ us(trait):at(Env):units,
#               data=example)
# summary(ans5)
# 
# ####===========================================####
# #### Multivariate unstructured variance models ####
# ####===========================================####
# 
# ans6 <- mmer2(cbind(Yield, Weight) ~ Env,
#               random= ~ us(trait):us(Env):Name,
#               rcov= ~ us(trait):at(Env):units,
#               data=example)
# summary(ans6)
# }
Run the code above in your browser using DataLab