##
###########################
## The GP models:
###########################
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.gp <- spT.forecast(nBurn=100, K=2, fore.data=DataValFore,
fore.coords=fore.coords, posteriors=post.gp, Summary=TRUE)
print(fore.gp)
# forecast validations for the validation sites
spT.validation(DataValFore$o8hrmax,c(fore.gp$Mean)) #
spT.pCOVER(DataValFore$o8hrmax,c(fore.gp$Up),c(fore.gp$Low)) #
spT.segment.plot(DataValFore$o8hrmax,c(fore.gp$Mean),
c(fore.gp$Up),c(fore.gp$Low))
abline(a=0,b=1)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.gp <- spT.forecast(nBurn=100, K=2, fore.data=fit.fore,
fore.coords=fore.coords, posteriors=post.gp, Summary=TRUE)
print(fore.gp)
# forecast validations for the fitted sites
spT.validation(fit.fore$o8hrmax,c(fore.gp$Mean)) #
spT.pCOVER(fit.fore$o8hrmax,c(fore.gp$Up),c(fore.gp$Low)) #
spT.segment.plot(fit.fore$o8hrmax,c(fore.gp$Mean),
c(fore.gp$Up),c(fore.gp$Low))
abline(a=0,b=1)
###########################
## The AR models:
###########################
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.ar <- spT.forecast(nBurn=100, K=2, fore.data=DataValFore,
fore.coords, pred.samples.ar=pred.ar,
posteriors=post.ar, Summary=TRUE)
print(fore.ar)
# forecast validations for the validation sites
spT.validation(DataValFore$o8hrmax,c(fore.ar$Mean)) #
spT.pCOVER(DataValFore$o8hrmax,c(fore.ar$Up),c(fore.ar$Low)) #
spT.segment.plot(DataValFore$o8hrmax,c(fore.ar$Mean),
c(fore.ar$Up),c(fore.ar$Low))
abline(a=0,b=1)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.ar <- spT.forecast(nBurn=100, K=2, fore.data=fit.fore,
fore.coords, pred.samples.ar=NULL,
posteriors=post.ar, Summary=TRUE)
print(fore.ar)
# forecast validations for the fitted sites
spT.validation(fit.fore$o8hrmax,c(fore.ar$Mean)) #
spT.pCOVER(fit.fore$o8hrmax,c(fore.ar$Up),c(fore.ar$Low)) #
spT.segment.plot(fit.fore$o8hrmax,c(fore.ar$Mean),
c(fore.ar$Up),c(fore.ar$Low))
abline(a=0,b=1)
###########################
## Models with GPP approximations:
###########################
##
## Temporal prediction/forecast
## 1. In the unobserved locations
##
# Read data
data(DataValFore);
# define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataValFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62
# in the unobserved locations using output from spT.Gibbs
set.seed(11)
fore.gpp <- spT.forecast(nBurn=100, K=2, fore.data=DataValFore,
fore.coords=fore.coords, posteriors=post.gpp,
Summary=TRUE)
names(fore.gpp)
# forecast validations for the validation sites
spT.validation(DataValFore$o8hrmax,c(fore.gpp$Mean)) #
spT.pCOVER(DataValFore$o8hrmax,c(fore.gpp$Up),c(fore.gpp$Low)) #
spT.segment.plot(DataValFore$o8hrmax,c(fore.gpp$Mean),
c(fore.gpp$Up),c(fore.gpp$Low))
abline(a=0,b=1)
##
## Temporal prediction/forecast
## 2. In the observed/fitted locations
##
# Read data
data(DataFitFore)
# Define forecast coordinates
fore.coords<-as.matrix(unique(cbind(DataFitFore[,2:3])))
# Two-step ahead forecast, i.e., in day 61 and 62,
# in the fitted locations using output from spT.Gibbs
set.seed(11)
fore.gpp <- spT.forecast(nBurn=100, K=2, fore.data=fit.fore,
fore.coords=forecast.coords, posteriors=post.gpp,
Summary=TRUE)
names(fore.gpp)
# forecast validations for the fitted sites
spT.validation(fit.fore$o8hrmax,c(fore.gpp$Mean)) #
spT.pCOVER(fit.fore$o8hrmax,c(fore.gpp$Up),c(fore.gpp$Low)) #
spT.segment.plot(fit.fore$o8hrmax,c(fore.gpp$Mean),
c(fore.gpp$Up),c(fore.gpp$Low))
abline(a=0,b=1)
##Run the code above in your browser using DataLab