##
###########################
## The GP models:
###########################
##
## Prediction for GP models
##
# define prediction coordinates and variables
pred.coords<-as.matrix(val.site[,2:3])
# GP prediction
pred.gp <- spT.prediction(nBurn=100, pred.data=val.dat,
pred.coords, posteriors=post.gp, tol.dist=2,
Summary=TRUE)
names(pred.gp)
# validation criteria and plots
spT.validation(val.dat$o8hrmax,c(pred.gp$Mean)) #
spT.pCOVER(val.dat$o8hrmax,c(pred.gp$Up),c(pred.gp$Low)) #
spT.segment.plot(val.dat$o8hrmax,c(pred.gp$Mean),
c(pred.gp$Up),c(pred.gp$Low))
abline(a=0,b=1)
##
## Fit and Prediction simultaneously
##
pred.coords<-as.matrix(val.site[,2:3])
coords<-as.matrix(fit.site[,2:3])
time.data<-spT.time(t.series=61,segment=1)
priors<-spT.priors(model="GP",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
initials<-spT.initials(model="GP", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
# input for spatial decay
#spatial.decay<-spT.decay(type="FIXED", value=0.01)
spatial.decay<-spT.decay(type="MH", tuning=0.08)
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.01,0.02),segments=5)
nItr<-5000
# MCMC via Gibbs
post.gp.fit.pred <- spT.Gibbs(formula=o8hrmax~cMAXTMP+WDSP+RH,
data=fit.dat, model="GP", time.data=time.data,
coords=coords, pred.coords=pred.coords, pred.data=val.dat,
priors=priors, initials=initials,
nItr=nItr, nBurn=1000, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay,
annual.aggregation="NONE")
names(post.gp.fit.pred)
post.gp.fit.pred$parameter
###########################
## The AR models:
###########################
##
## Prediction for AR models
##
# define prediction coordinates and variables
pred.coords<-as.matrix(val.site[,2:3])
# AR prediction
pred.ar <- spT.prediction(nBurn=100, pred.data=val.dat,
pred.coords=pred.coords,
posteriors=post.ar, tol.dist=2, Summary=TRUE)
names(pred.ar)
# validation criteria and plots
spT.validation(val.dat$o8hrmax,c(pred.ar$Mean)) #
spT.pCOVER(val.dat$o8hrmax,c(pred.ar$Up),c(pred.ar$Low)) #
spT.segment.plot(val.dat$o8hrmax,c(pred.ar$Mean),
c(pred.ar$Up),c(pred.ar$Low))
abline(a=0,b=1)
##
## fit and predict combinedly for AR models with text output
##
pred.coords<-as.matrix(val.site[,2:3])
coords<-as.matrix(fit.site[,2:3])
time.data<-spT.time(t.series=61,segment=1)
priors<-spT.priors(model="AR",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
initials<-spT.initials(model="AR", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
# input for spatial decay
#spatial.decay<-spT.decay(type="FIXED", value=0.01)
spatial.decay<-spT.decay(type="MH", tuning=0.08)
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.01,0.02),segments=5)
nItr<-500
nBurn<-100
# MCMC via Gibbs
post.ar.fit.pred <- spT.Gibbs(formula=o8hrmax~cMAXTMP+WDSP+RH,
data=fit.dat, model="AR", time.data=time.data,
coords=coords, pred.coords=pred.coords, pred.data=val.dat,
priors=priors, initials=initials,
nItr=nItr, nBurn=nBurn, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay,
annual.aggregation="an4th")
names(post.ar.fit.pred)
post.ar.fit.pred$para
###########################
## Models with GPP approximations:
###########################
##
## prediction for the GPP
##
# define prediction coordinates and variables
pred.coords<-as.matrix(val.site[,2:3])
# GPP prediction
pred.gpp <- spT.prediction(nBurn=100, pred.data=val.dat,
pred.coords=pred.coords, posteriors=post.gpp, tol.dist=2,
Summary=TRUE)
names(pred.gpp)
# validation criteria and plots
spT.validation(val.dat$o8hrmax,c(pred.gpp$Mean)) #
spT.pCOVER(val.dat$o8hrmax,c(pred.gpp$Up),c(pred.gpp$Low)) #
spT.segment.plot(val.dat$o8hrmax,c(pred.gpp$Mean),
c(pred.gpp$Up),c(pred.gpp$Low))#,limit=c(0,100))
abline(a=0,b=1)
##
## fit and predict together for the GPP with text output
##
pred.coords<-as.matrix(val.site[,2:3])
coords<-as.matrix(fit.site[,2:3])
knots.coords<-spT.grid.coords(Longitude=c(max(coords[,1]),
min(coords[,1])),Latitude=c(max(coords[,2]),
min(coords[,2])), by=c(4,4))
time.data<-spT.time(t.series=61,segment=1)
priors<-spT.priors(model="GPP",var.prior=Gam(2,1),
beta.prior=Nor(0,10^4))
#priors<-NULL
initials<-spT.initials(model="GPP", sig2eps=0.01,
sig2eta=0.5, beta=NULL, phi=0.001)
#initials<-NULL
# input for spatial decay
#spatial.decay<-spT.decay(type="FIXED", value=0.01)
spatial.decay<-spT.decay(type="MH", tuning=0.0008)
#spatial.decay<-spT.decay(type="DISCRETE",limit=c(0.001,0.002),segments=5)
nItr<-500
# MCMC via Gibbs
post.gpp.fit.pred <- spT.Gibbs(formula=o8hrmax~cMAXTMP+WDSP+RH,
data=fit.dat, model="GPP", time.data=time.data,
coords=coords, knots.coords=knots.coords,
pred.coords=pred.coords, pred.data=val.dat,
priors=priors, initials=initials,
nItr=nItr, nBurn=100, report=nItr,
tol.dist=2, distance.method="geodetic:km",
cov.fnc="exponential", scale.transform="SQRT",
spatial.decay=spatial.decay,
annual.aggregation="NONE")
names(post.gpp.fit.pred)
post.gpp.fit.pred$para
##
Run the code above in your browser using DataLab