##
###########################
## The GP models:
###########################
##
## Prediction for GP models
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# GP prediction
set.seed(11)
pred.gp <- spT.prediction(nBurn=2000, pred.data=DataValPred,
pred.coords, posteriors=post.gp, tol.dist=2,
Summary=TRUE)
print(pred.gp)
names(pred.gp)
# validation criteria and plots
spT.validation(DataValPred$o8hrmax,c(pred.gp$Mean)) #
spT.pCOVER(DataValPred$o8hrmax,c(pred.gp$Up),c(pred.gp$Low)) #
spT.segment.plot(DataValPred$o8hrmax,c(pred.gp$Mean),
c(pred.gp$Up),c(pred.gp$Low))
abline(a=0,b=1)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gp.fitpred)
summary(post.gp.fitpred)
coef(post.gp.fitpred)
plot(post.gp.fitpred,residuals=TRUE)
names(post.gp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gp.fitpred$prediction[,1]))
###########################
## The AR models:
###########################
##
## Prediction for AR models
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# AR prediction
set.seed(11)
pred.ar <- spT.prediction(nBurn=100, pred.data=DataValPred,
pred.coords=pred.coords,
posteriors=post.ar, tol.dist=2, Summary=TRUE)
print(pred.ar)
# validation criteria and plots
spT.validation(DataValPred$o8hrmax,c(pred.ar$Mean)) #
spT.pCOVER(DataValPred$o8hrmax,c(pred.ar$Up),c(pred.ar$Low)) #
spT.segment.plot(DataValPred$o8hrmax,c(pred.ar$Mean),
c(pred.ar$Up),c(pred.ar$Low))
abline(a=0,b=1)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.ar.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="AR", coords=coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.ar.fitpred)
summary(post.ar.fitpred)
coef(post.ar.fitpred)
names(post.ar.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.ar.fitpred$prediction[,1]))
###########################
## The GPP approximations models:
###########################
##
## prediction for the GPP
##
# Read data
data(DataValPred)
# Define prediction coordinates
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
# GPP prediction
set.seed(11)
pred.gpp <- spT.prediction(nBurn=100, pred.data=DataValPred,
pred.coords=pred.coords, posteriors=post.gpp, tol.dist=2,
Summary=TRUE)
names(pred.gpp)
# validation criteria and plots
spT.validation(DataValPred$o8hrmax,c(pred.gpp$Mean)) #
spT.pCOVER(DataValPred$o8hrmax,c(pred.gpp$Up),c(pred.gpp$Low)) #
spT.segment.plot(DataValPred$o8hrmax,c(pred.gpp$Mean),
c(pred.gpp$Up),c(pred.gpp$Low))#,limit=c(0,100))
abline(a=0,b=1)
##
## Fit and spatially prediction simultaneously
##
# Read data
data(DataFit);
data(DataValPred)
# Define the coordinates
coords<-as.matrix(unique(cbind(DataFit[,2:3])))
pred.coords<-as.matrix(unique(cbind(DataValPred[,2:3])))
knots.coords<-spT.grid.coords(Longitude=c(max(coords[,1]),
min(coords[,1])),Latitude=c(max(coords[,2]),
min(coords[,2])), by=c(4,4))
# MCMC via Gibbs will provide output in *.txt format
# from C routine to avoide large data problem in R
set.seed(11)
post.gpp.fitpred <- spT.Gibbs(formula=o8hrmax ~cMAXTMP+WDSP+RH,
data=DataFit, model="GP", coords=coords, knots.coords=knots.coords,
newcoords=pred.coords, newdata=DataValPred,
scale.transform="SQRT")
print(post.gpp.fitpred)
summary(post.gpp.fitpred)
coef(post.gpp.fitpred)
plot(post.gpp.fitpred, residuals=TRUE)
names(post.gpp.fitpred)
# validation criteria
spT.validation(DataValPred$o8hrmax,c(post.gpp.fitpred$prediction[,1]))
##Run the code above in your browser using DataLab