Reads from a Spark Table into a Spark DataFrame.
spark_read_table(sc, name, options = list(), repartition = 0,
memory = TRUE, columns = NULL, ...)A spark_connection.
The name to assign to the newly generated table.
A list of strings with additional options. See http://spark.apache.org/docs/latest/sql-programming-guide.html#configuration.
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
A vector of column names or a named vector of column types.
If specified, the elements can be "binary" for BinaryType,
"boolean" for BooleanType, "byte" for ByteType,
"integer" for IntegerType, "integer64" for LongType,
"double" for DoubleType, "character" for StringType,
"timestamp" for TimestampType and "date" for DateType.
Optional arguments; currently unused.
Other Spark serialization routines: spark_load_table,
spark_read_csv,
spark_read_delta,
spark_read_jdbc,
spark_read_json,
spark_read_libsvm,
spark_read_orc,
spark_read_parquet,
spark_read_source,
spark_read_text,
spark_save_table,
spark_write_csv,
spark_write_delta,
spark_write_jdbc,
spark_write_json,
spark_write_orc,
spark_write_parquet,
spark_write_source,
spark_write_table,
spark_write_text