User-friendly construction of sparse matrices (inheriting from
virtual class
CsparseMatrix
,
RsparseMatrix
, or
TsparseMatrix
)
from the positions and values of their nonzero entries.
This interface is recommended over direct construction via
calls such as new("..[CRT]Matrix", ...)
.
sparseMatrix(i, j, p, x, dims, dimnames,
symmetric = FALSE, triangular = FALSE, index1 = TRUE,
repr = c("C", "R", "T"), giveCsparse,
check = TRUE, use.last.ij = FALSE)
A sparse matrix, by default in compressed sparse column format and
(formally) without symmetric or triangular structure, i.e.,
by default inheriting from both CsparseMatrix
and generalMatrix
.
integer vectors of equal length specifying the positions
(row and column indices) of the nonzero (or non-TRUE
) entries
of the matrix. Note that, when x
is non-missing, the
TsparseMatrix
, unless use.last.ij
is
TRUE
, in which case only the last such
integer vector of pointers, one for each column (or row),
to the initial (zero-based) index of elements in the column (or row).
Exactly one of i
, j
, and p
must be missing.
optional, typically nonzero values for the matrix entries.
If specified, then the length must equal that of i
(or j
) or equal 1, in which case x
is recycled as
necessary. If missing, then the result is a nonzero pattern
matrix, i.e., inheriting from class nsparseMatrix
.
optional length-2 integer vector of matrix dimensions.
If missing, then !index1+c(max(i),max(j))
is used.
optional list of dimnames
; if missing,
then NULL
ones are used.
logical indicating if the resulting matrix should
be symmetric. In that case,
logical indicating if the resulting matrix should
be triangular. In that case,
logical. If TRUE
(the default), then i
and j
are interpreted as 1-based indices, following the R
convention. That is, counting of rows and columns starts at 1.
If FALSE
, then they are interpreted as 0-based indices.
character
string, one of "C"
,
"R"
, and "T"
, specifying the representation
of the sparse matrix result, i.e., specifying one of the virtual
classes CsparseMatrix
,
RsparseMatrix
, and
TsparseMatrix
.
(deprecated, replaced by repr
)
logical indicating if the result should inherit from
CsparseMatrix
or
TsparseMatrix
.
Note that operations involving CsparseMatrix
are very often
(but not always) more efficient.
logical indicating whether to check that the result is
formally valid before returning. Do not set to FALSE
unless
you know what you are doing!
logical indicating if, in the case of repeated
(duplicated) pairs FALSE
(the default) is consistent with the definiton
of class TsparseMatrix
.
Exactly one of the arguments i
, j
and p
must be
missing.
In typical usage, p
is missing, i
and j
are
vectors of positive integers and x
is a numeric vector. These
three vectors, which must have the same length, form the triplet
representation of the sparse matrix.
If i
or j
is missing then p
must be a
non-decreasing integer vector whose first element is zero. It
provides the compressed, or “pointer” representation of the row
or column indices, whichever is missing. The expanded form of p
,
rep(seq_along(dp),dp)
where dp <- diff(p)
, is used as
the (1-based) row or column indices.
You cannot set both singular
and triangular
to true;
rather use Diagonal()
(or its alternatives, see there).
The values of i
, j
, p
and index1
are used
to create 1-based index vectors i
and j
from which a
TsparseMatrix
is constructed, with numerical
values given by x
, if non-missing. Note that in that case,
when some pairs TsparseMatrix
class, unless use.last.ij
is set to true.
By default, when repr = "C"
, the CsparseMatrix
derived from this triplet form is returned, where repr = "R"
now
allows to directly get an RsparseMatrix
and
repr = "T"
leaves the result as TsparseMatrix
.
The reason for returning a CsparseMatrix
object
instead of the triplet format by default is that the compressed column
form is easier to work with when performing matrix operations. In
particular, if there are no zeros in x
then a
CsparseMatrix
is a unique representation of the
sparse matrix.
Matrix(*, sparse=TRUE)
for the constructor of
such matrices from a dense matrix. That is easier in small
sample, but much less efficient (or impossible) for large matrices,
where something like sparseMatrix()
is needed.
Further bdiag
and Diagonal
for (block-)diagonal and
bandSparse
for banded sparse matrix constructors.
Random sparse matrices via rsparsematrix()
.
The standard R xtabs(*, sparse=TRUE)
, for sparse tables
and sparse.model.matrix()
for building sparse model
matrices.
Consider CsparseMatrix
and similar class
definition help files.
library(utils, pos = "package:base", verbose = FALSE)
## simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
summary(A)
str(A) # note that *internally* 0-based row indices are used
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopifnot( all(sA == tA + t(tA)) ,
identical(sA, as(tA + t(tA), "symmetricMatrix")))
## dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)
## i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopifnot(identical(A, A1))
## The slots are 0-index based, so
try( sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)) )
## fails and you should say so: 1-indexing is FALSE:
sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)
## the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
## explicitly ask for elimination of such duplicates, so
## that the last one is used:
(A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopifnot(Aa[1,2] == 9, # 2+7 == 9
A.[1,2] == 2) # 2 was *after* 7
## for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")]))
dn <- list(LETTERS[1:3], letters[1:5])
## pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopifnot(identical(dimnames(m), dn))
sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"
## no 'x' --> patter*n* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# -> ngCMatrix
## an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i={}, j={}))
## a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
dims = c(7,7), symmetric=TRUE))
stopifnot(isSymmetric(sy),
identical(sy, ## switch i <-> j {and transpose }
t( sparseMatrix(j= c(2,4,3:5), i= c(4,7:5,5), x = 1:5,
dims = c(7,7), symmetric=TRUE))))
## rsparsematrix() calls sparseMatrix() :
M1 <- rsparsematrix(1000, 20, nnz = 200)
summary(M1)
## pointers example in converting from other sparse matrix representations.
if(requireNamespace("SparseM") &&
packageVersion("SparseM") >= "0.87" &&
nzchar(dfil <- system.file("extdata", "rua_32_ax.rua", package = "SparseM"))) {
X <- SparseM::model.matrix(SparseM::read.matrix.hb(dfil))
XX <- sparseMatrix(j = X@ja, p = X@ia - 1L, x = X@ra, dims = X@dimension)
validObject(XX)
## Alternatively, and even more user friendly :
X. <- as(X, "Matrix") # or also
X2 <- as(X, "sparseMatrix")
stopifnot(identical(XX, X.), identical(X., X2))
}
Run the code above in your browser using DataLab