Learn R Programming

MBESS (version 4.1.0)

ss.aipe.sem.path.sensitiv: a priori Monte Carlo simulation for sample size planning for SEM targeted effects

Description

Conduct a priori Monte Carlo simulation to empirically study the effects of (mis)specifications of input information on the calculated sample size. Random data are generated from the true covariance matrix but fit to the proposed model, whereas sample size is calculated based on the input covariance matrix and proposed model.

Usage

ss.aipe.sem.path.sensitiv(model, est.Sigma, true.Sigma = est.Sigma, which.path, desired.width, N=NULL, conf.level = 0.95, assurance = NULL, G = 100, ...)

Arguments

model
the model the researcher proposes, may or may not be the true model. This argument should be an RAM (reticular action model; e.g., McArdle & McDonald, 1984) specification of a structural equation model, and should be of class mod. The model is specified in the same manner as does the sem package; see sem and specify.model for detailed documentation about model specifications in the RAM notation.
est.Sigma
the covariance matrix used to calculate sample size, may or may not be the true covariance matrix. The row names and column names of est.Sigma should be the same as the manifest variables in est.model.
true.Sigma
the true population covariance matrix, which will be used to generate random data for the simulation study. The row names and column names of est.Sigma should be the same as the manifest variables in est.model.
which.path
the name of the model parameter of interest, and must be in a double quote
desired.width
desired confidence interval width for the model parameter of interest
N
the sample size of random data. If it is NULL, it will be determined by the sample size planning method
conf.level
confidence level (i.e., 1- Type I error rate)
assurance
the assurance that the confidence interval obtained in a particular study will be no wider than desired (must be NULL or a value between 0.50 and 1)
G
number of replications in the Monte Carlo simulation
...
allows one to potentially include parameter values for inner functions

Value

Details

This function implements the sample size planning methods proposed in Lai and Kelley (2010). It depends on the function sem in the sem package to calculate the expected information matrix, and uses the same notation to specify SEM models as does sem. Please refer to sem for more detailed documentation about model specifications, the RAM notation, and model fitting techniques. For technical discussion on how to obtain the model implied covariance matrix in the RAM notation given model parameters, see McArdle and McDonald (1984).

References

Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling, 13, 465--486.

Lai, K., & Kelley, K. (in press). Accuracy in parameter estimation for targeted effects in structural equation modeling: Sample size planning for narrow confidence intervals. Psychological Methods.

McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model. British Journal of Mathematical and Statistical Psychology, 37, 234--251.

See Also

sem; specify.model; theta.2.Sigma.theta; ss.aipe.sem.path

Examples

Run this code
## Not run: 
# # Suppose the model of interest is Model 2 of the simulation study in 
# # Lai and Kelley (2010), and the goal is to obtain a 95% confidence 
# # interval for 'beta21' no wider than 0.3.
# 
# library(sem)
# 
# # specify a model object in the RAM notation
# model.2<-specifyModel()
# xi1 -> y1, lambda1, 1
# xi1 -> y2, NA, 1
# xi1 -> y3, lambda2, 1
# xi1 -> y4, lambda3, 0.3
# eta1 -> y4, lambda4, 1
# eta1 -> y5, NA, 1
# eta1 -> y6, lambda5, 1
# eta1 -> y7, lambda6, 0.3
# eta2 -> y6, lambda7, 0.3
# eta2 -> y7, lambda8, 1
# eta2 -> y8, NA, 1
# eta2 -> y9, lambda9, 1
# xi1 -> eta1, gamma11, 0.6
# eta1 -> eta2, beta21, 0.6 
# xi1 <-> xi1, phi11, 0.49
# eta1 <-> eta1, psi11, 0.3136
# eta2 <-> eta2, psi22, 0.3136
# y1 <-> y1, delta1, 0.51
# y2 <-> y2, delta2, 0.51
# y3 <-> y3, delta3, 0.51
# y4 <-> y4, delta4, 0.2895
# y5 <-> y5, delta5, 0.51
# y6 <-> y6, delta6, 0.2895
# y7 <-> y7, delta7, 0.2895
# y8 <-> y8, delta8, 0.51
# y9 <-> y9, delta9, 0.51
# 
# 
# # to inspect the specified model
# model.2
# 
# # one way to specify the population covariance matrix is to
# # first specify path coefficients and then calcualte the 
# # model-implied covariance matrix
# theta <- c(1, 1, 0.3, 1,1, 0.3, 0.3, 1, 1, 0.6, 0.6,
# 0.49, 0.3136, 0.3136, 0.51, 0.51, 0.51, 0.2895, 0.51, 0.2895, 0.2895, 0.51, 0.51)
# 
# names(theta) <- c("lambda1","lambda2","lambda3",
# "lambda4","lambda5","lambda6","lambda7","lambda8","lambda9",
# "gamma11", "beta21",
# "phi11", "psi11", "psi22", 
# "delta1","delta2","delta3","delta4","delta5","delta6","delta7",
# "delta8","delta9")
# 
# res<-theta.2.Sigma.theta(model=model.2, theta=theta, 
# latent.vars=c("xi1", "eta1","eta2"))
# 
# Sigma.theta <- res$Sigma.theta
# # thus 'Sigma.theta' is the input covariance matrix for sample size planning procedure.
# 
# # the necessary sample size can be calculated as follows.
# # ss.aipe.sem.path(model=model.2, Sigma=Sigma.theta, 
# # desired.width=0.3, which.path="beta21")
# 
# # to verify the sample size calculated
# # ss.aipe.sem.path.sensitiv(est.model=model.2, est.Sigma=Sigma.theta, 
# # which.path="beta21", desired.width=0.3, G = 300)
# 
# # suppose the true covariance matrix ('var(X)' below) is in fact 
# # a point close to 'Sigma.theta':
# 
# # X<-mvrnorm(n=1000, mu=rep(0,9), Sigma=Sigma.pop)
# # var(X)
# # ss.aipe.sem.path.sensitiv(est.model=model.2, est.Sigma=Sigma.theta, 
# # true.Sigma=var(X), which.path="beta21", desired.width=0.3, G=300)
# ## End(Not run)

Run the code above in your browser using DataLab