Last chance! 50% off unlimited learning
Sale ends in
stan_plot(object, pars, include = TRUE, unconstrain = FALSE, ...)
stan_trace(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
window = NULL)
stan_scat(object, pars, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...)
stan_hist(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...)
stan_dens(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
separate_chains = FALSE)
stan_ac(object, pars, include = TRUE, unconstrain = FALSE,
inc_warmup = FALSE, nrow = NULL, ncol = NULL, ...,
separate_chains = FALSE, lags = 25, partial = FALSE)
quietgg(gg)
object
is a stanfit object, the default is to show
all user-defined parameters or the first 10 (if there are more
than 10). If object
is a stanreg object, the default is
to show all (or the first 10) regression coefficients
(including the intercept). For stan_scat
only,
pars
should not be missing and should contain exactly
two parameter names.pars
argument be
included (the default) or excluded from the plot?FALSE
. Only available if object
is a
stanfit object.FALSE
.facet_wrap
.stan_trace
the geom is geom_path
and we could specify linetype
, size
, alpha
, etc.).
For stan_plot
there are also additional arguments that can be specified
in ...
(see Details).stan_trace
window
is used to control
which iterations are shown in the plot. See traceplot
.stan_dens
, should the density for each
chain be plotted? The default is FALSE
, which means that for each
parameter the draws from all chains are combined. For stan_ac
,
if separate_chains=FALSE
(the default), the autocorrelation is
averaged over the chains. If TRUE
each chain is plotted separately.stan_ac
, the maximum number of lags to show.stan_ac
, should partial autocorrelations be
plotted instead? Defaults to FALSE
.ggplot
object that can be further customized
using the ggplot2 package.stan_plot
, there are additional arguments that can be specified in
...
. The optional arguments and their default values are:
point_est = "median"
show_density = FALSE
ci_level = 0.8
100*ci_level
% intervals are computed from the quantiles of
the posterior draws.outer_level = 0.95
show_outer_line
is TRUE
) but not highlight.
show_outer_line = TRUE
outer_level
interval
be shown or hidden? Defaults to = TRUE
(to plot it).
fill_color
, outline_color
, est_color
List of RStan plotting functions
,
Plot options
## Not run: ------------------------------------
# example("read_stan_csv")
# stan_plot(fit)
# stan_trace(fit)
#
# library(gridExtra)
# fit <- stan_demo("eight_schools")
#
# stan_plot(fit)
# stan_plot(fit, point_est = "mean", show_density = TRUE, fill_color = "maroon")
#
#
# # histograms
# stan_hist(fit)
# # suppress ggplot2 messages about default bindwidth
# quietgg(stan_hist(fit))
# quietgg(h <- stan_hist(fit, pars = "theta", binwidth = 5))
#
# # juxtapose histograms of tau and unconstrained tau
# tau <- stan_hist(fit, pars = "tau")
# tau_unc <- stan_hist(fit, pars = "tau", unconstrain = TRUE) +
# xlab("tau unconstrained")
# grid.arrange(tau, tau_unc)
#
# # kernel density estimates
# stan_dens(fit)
# (dens <- stan_dens(fit, fill = "skyblue", ))
# dens <- dens + ggtitle("Kernel Density Estimates\n") + xlab("")
# dens
#
# (dens_sep <- stan_dens(fit, separate_chains = TRUE, alpha = 0.3))
# dens_sep + scale_fill_manual(values = c("red", "blue", "green", "black"))
# (dens_sep_stack <- stan_dens(fit, pars = "theta", alpha = 0.5,
# separate_chains = TRUE, position = "stack"))
#
# # traceplot
# trace <- stan_trace(fit)
# trace +
# scale_color_manual(values = c("red", "blue", "green", "black"))
# trace +
# scale_color_brewer(type = "div") +
# theme(legend.position = "none")
#
# facet_style <- theme(strip.background = element_rect(fill = "white"),
# strip.text = element_text(size = 13, color = "black"))
# (trace <- trace + facet_style)
#
# # scatterplot
# (mu_vs_tau <- stan_scat(fit, pars = c("mu", "tau"), color = "blue", size = 4))
# mu_vs_tau +
# coord_flip() +
# theme(panel.background = element_rect(fill = "black"))
#
## ---------------------------------------------
Run the code above in your browser using DataLab