'standalone.bgx' creates various files needed by the bgx standalone binary and places them in a directory. One of these files is 'infile.txt'. In order to run standalone BGX, compile it and run 'bgx
bgx(aData, samplesets = NULL, genes = NULL, genesToWatch = NULL, burnin = 8192, iter = 16384, output = c("minimal","trace","all"), probeAff = TRUE, probecat_threshold = 100, adaptive = TRUE, rundir = ".")
standalone.bgx(aData, samplesets = NULL, genes = NULL, genesToWatch = NULL, burnin = 8192, iter = 16384, output = c("minimal", "trace", "all"), probeAff = TRUE, probecat_threshold = 100, adaptive = TRUE, batch_size = 50, optimalAR = 0.44, inputdir = "input")
AffyBatch
object.phenoData
slot, this argument is not required.ExpressionSet
object containing gene expression information for each gene under each condition (not each replicate).'standalone.bgx' returns the path to the BGX input files.
Hekstra, D., Taussig, A. R., Magnasco, M., and Naef, F. (2003) Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide array. Nucleic Acids Research, 31. 1962-1968.
G.O. Roberts, J.S. Rosenthal (September, 2006) Examples of Adaptive MCMC.
# This example requires the 'affydata' and 'hgu95av2cdf' packages
if(require(affydata) && require(hgu95av2cdf)) {
data(Dilution)
eset <- bgx(Dilution, samplesets=c(2,2), probeAff=FALSE, burnin=4096, iter=8192,
genes=c(12500:12599), output="all", rundir=file.path(tempdir()))
}
Run the code above in your browser using DataLab