## Not run: 
# library(OpenMx)
# data(myFADataRaw)
# myFADataRaw <- myFADataRaw[,c("x1","x2","x3","x4","x5","x6")]
# oneFactorModel <- mxModel("Common Factor Model Path Specification", 
# 	type="RAM",
# 	mxData(
# 		observed=myFADataRaw, 
# 		type="raw"
# 	),
# 	manifestVars=c("x1","x2","x3","x4","x5","x6"),
# 	latentVars="F1",
# 	mxPath(from=c("x1","x2","x3","x4","x5","x6"),
# 		arrows=2,
# 		free=TRUE,
# 		values=c(1,1,1,1,1,1),
# 		labels=c("e1","e2","e3","e4","e5","e6")
# 	), 
# 	# residual variances
# 	# -------------------------------------
# 	mxPath(from="F1",
# 		arrows=2,
# 		free=TRUE,
# 		values=1,
# 		labels ="varF1"
# 	), 
# 	# latent variance
# 	# -------------------------------------
# 	mxPath(from="F1",
# 		to=c("x1","x2","x3","x4","x5","x6"),
# 		arrows=1,
# 		free=c(FALSE,TRUE,TRUE,TRUE,TRUE,TRUE),
# 		values=c(1,1,1,1,1,1),
# 		labels =c("l1","l2","l3","l4","l5","l6")
# 	), 
# 	# factor loadings
# 	# -------------------------------------
# 	mxPath(from="one",
# 		to=c("x1","x2","x3","x4","x5","x6","F1"),
# 		arrows=1,
# 		free=c(TRUE,TRUE,TRUE,TRUE,TRUE,TRUE,FALSE),
# 		values=c(1,1,1,1,1,1,0),
# 		labels =c("meanx1","meanx2","meanx3","meanx4","meanx5","meanx6",NA)
# 	) 
# 	# means
# 	# -------------------------------------
# ) # close model
# # Create an MxModel object
# # -----------------------------------------------------------------------------
# oneFactorFit <- mxRun(oneFactorModel)      
# standardizeMx(oneFactorFit)
# 
# # Compare with lavaan
# library(lavaan)
# script <- "f1 =~ x1 + x2 + x3 + x4 + x5 + x6"
# fit <- cfa(script, data=myFADataRaw, meanstructure=TRUE)
# standardizedSolution(fit)
# ## End(Not run)
Run the code above in your browser using DataLab