
Last chance! 50% off unlimited learning
Sale ends in
Bandwidth selectors for Gaussian kernels in density
.
bw.nrd0(x)bw.nrd(x)
bw.ucv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
tol = 0.1 * lower)
bw.bcv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
tol = 0.1 * lower)
bw.SJ(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
method = c("ste", "dpi"), tol = 0.1 * lower)
numeric vector.
number of bins to use.
range over which to minimize. The default is
almost always satisfactory. hmax
is calculated internally
from a normal reference bandwidth.
either "ste"
("solve-the-equation") or
"dpi"
("direct plug-in"). Can be abbreviated.
for method "ste"
, the convergence tolerance for
uniroot
. The default leads to bandwidth estimates
with only slightly more than one digit accuracy, which is sufficient
for practical density estimation, but possibly not for theoretical
simulation studies.
A bandwidth on a scale suitable for the bw
argument
of density
.
bw.nrd0
implements a rule-of-thumb for
choosing the bandwidth of a Gaussian kernel density estimator.
It defaults to 0.9 times the
minimum of the standard deviation and the interquartile range divided by
1.34 times the sample size to the negative one-fifth power
(= Silverman's ‘rule of thumb’, Silverman (1986, page 48, eqn (3.31))
unless the quartiles coincide when a positive result
will be guaranteed.
bw.nrd
is the more common variation given by Scott (1992),
using factor 1.06.
bw.ucv
and bw.bcv
implement unbiased and
biased cross-validation respectively.
bw.SJ
implements the methods of Sheather & Jones (1991)
to select the bandwidth using pilot estimation of derivatives.
The algorithm for method "ste"
solves an equation (via
uniroot
) and because of that, enlarges the interval
c(lower, upper)
when the boundaries were not user-specified and
do not bracket the root.
The last three methods use all pairwise binned distances: they are of
complexity n = nb/2
and x
is translated or sign-flipped.
Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.
Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel density estimation. Journal of the Royal Statistical Society series B, 53, 683--690.
Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.
bandwidth.nrd
, ucv
,
bcv
and width.SJ
in
package MASS, which are all scaled to the width
argument
of density
and so give answers four times as large.
# NOT RUN {
require(graphics)
plot(density(precip, n = 1000))
rug(precip)
lines(density(precip, bw = "nrd"), col = 2)
lines(density(precip, bw = "ucv"), col = 3)
lines(density(precip, bw = "bcv"), col = 4)
lines(density(precip, bw = "SJ-ste"), col = 5)
lines(density(precip, bw = "SJ-dpi"), col = 6)
legend(55, 0.035,
legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
col = 1:6, lty = 1)
# }
Run the code above in your browser using DataLab