Last chance! 50% off unlimited learning
Sale ends in
stepback
fits a linear regression model applying a backward-stepwise strategy.
stepback(y = y, d = d, alfa = 0.05, family = gaussian(), epsilon=0.00001 )
glm.control
, convergence tolerance in the iterative process to estimate de glm modelstepback
returns an object of the class lm
, where the model uses
y
as dependent variable and all the selected variables from d
as independent variables.The function summary
are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients
, effects
,
fitted.values
and residuals
extract various useful features of the value returned by lm
.
lm
, step
, stepfor
, two.ways.stepback
, two.ways.stepfor
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)
## expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)
s.fit <- stepback(y = y, d = dis)
summary(s.fit)
Run the code above in your browser using DataLab