# NOT RUN {
library(TunePareto)
data(esl)
data = esl$data
labels = esl$labels
foldList = generateCVRuns(labels = labels,
ntimes = 2,
nfold = 2,
leaveOneOut = FALSE,
stratified = TRUE)
predMap = predictionMap(data, labels, foldList = foldList,
classifier = tunePareto.svm(), kernel='linear')
# use default parameter settings
# -> returns cascades of all lengths that show a minimal classwise sensitivity >0.
subc = subcascades(predMap)
# change the threshold
# -> returns cascades of all lengths that show a minimal classwise sensitivity >=0.6.
subc = subcascades(predMap, thresh=0.6)
# search only for cascades of length 2 and 4
# -> returns cascades of length 2 and 4 that show a minimal classwise sensitivity >=0.6.
subc = subcascades(predMap, thresh=0.6, size=c(2,4))
# evaluates the performance of the cascade '0>1>2>3>4'.
subc = subcascades(predMap, sets = c('0>1>2>3>4'))
# }
Run the code above in your browser using DataLab