summarize
is a fast version of summary.formula(formula,
method="cross",overall=FALSE)
for producing stratified summary statistics
and storing them in a data frame for plotting (especially with trellis
xyplot
and dotplot
and Hmisc xYplot
). Unlike
aggregate
, summarize
accepts a matrix as its first
argument and a multi-valued FUN
argument and summarize
also labels the variables in the new data
frame using their original names. Unlike methods based on
tapply
, summarize
stores the values of the stratification
variables using their original types, e.g., a numeric by
variable
will remain a numeric variable in the collapsed data frame.
summarize
also retains "label"
attributes for variables.
summarize
works especially well with the Hmisc xYplot
function for displaying multiple summaries of a single variable on each
panel, such as means and upper and lower confidence limits.
asNumericMatrix
converts a data frame into a numeric matrix,
saving attributes to reverse the process by matrix2dataframe
.
It saves attributes that are commonly preserved across row
subsetting (i.e., it does not save dim
, dimnames
, or
names
attributes).
matrix2dataFrame
converts a numeric matrix back into a data
frame if it was created by asNumericMatrix
.
summarize(X, by, FUN, …,
stat.name=deparse(substitute(X)),
type=c('variables','matrix'), subset=TRUE,
keepcolnames=FALSE)asNumericMatrix(x)
matrix2dataFrame(x, at=attr(x, 'origAttributes'), restoreAll=TRUE)
a vector or matrix capable of being operated on by the
function specified as the FUN
argument
one or more stratification variables. If a single
variable, by
may be a vector, otherwise it should be a list.
Using the Hmisc llist
function instead of list
will result
in individual variable names being accessible to summarize
. For
example, you can specify llist(age.group,sex)
or
llist(Age=age.group,sex)
. The latter gives age.group
a
new temporary name, Age
.
a function of a single vector argument, used to create the statistical
summaries for summarize
. FUN
may compute any number of
statistics.
extra arguments are passed to FUN
the name to use when creating the main summary variable. By default,
the name of the X
argument is used. Set stat.name
to
NULL
to suppress this name replacement.
Specify type="matrix"
to store the summary variables (if there are
more than one) in a matrix.
a logical vector or integer vector of subscripts used to specify the subset of data to use in the analysis. The default is to use all observations in the data frame.
by default when type="matrix"
, the first
column of the computed matrix is the name of the first argument to
summarize
. Set keepcolnames=TRUE
to retain the name of
the first column created by FUN
a data frame (for asNumericMatrix
) or a numeric matrix (for
matrix2dataFrame
).
List containing attributes of original data frame that survive
subsetting. Defaults to attribute "origAttributes"
of the
object x
, created by the call to asNumericMatrix
set to FALSE
to only restore attributes label
,
units
, and levels
instead of all attributes
For summarize
, a data frame containing the by
variables and the
statistical summaries (the first of which is named the same as the X
variable unless stat.name
is given). If type="matrix"
, the
summaries are stored in a single variable in the data frame, and this
variable is a matrix.
asNumericMatrix
returns a numeric matrix and stores an object
origAttributes
as an attribute of the returned object, with original
attributes of component variables, the storage.mode
.
matrix2dataFrame
returns a data frame.
# NOT RUN {
s <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean,
stat.name='Proportion')
dotplot(Proportion ~ size | bone, data=s7)
# }
# NOT RUN {
set.seed(1)
temperature <- rnorm(300, 70, 10)
month <- sample(1:12, 300, TRUE)
year <- sample(2000:2001, 300, TRUE)
g <- function(x)c(Mean=mean(x,na.rm=TRUE),Median=median(x,na.rm=TRUE))
summarize(temperature, month, g)
mApply(temperature, month, g)
mApply(temperature, month, mean, na.rm=TRUE)
w <- summarize(temperature, month, mean, na.rm=TRUE)
library(lattice)
xyplot(temperature ~ month, data=w) # plot mean temperature by month
w <- summarize(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE, type='matrix')
xYplot(Cbind(temperature[,1],temperature[,-1]) ~ month | year, data=w)
mApply(temperature, llist(year,month),
quantile, probs=c(.5,.25,.75), na.rm=TRUE)
# Compute the median and outer quartiles. The outer quartiles are
# displayed using "error bars"
set.seed(111)
dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)
attach(dfr)
y <- abs(month-6.5) + 2*runif(length(month)) + year-1997
s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)
s
mApply(y, llist(month,year), smedian.hilow, conf.int=.5)
xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s,
keys='lines', method='alt')
# Can also do:
s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75),
stat.name=c('y','Q1','Q3'))
xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s, keys='lines')
# To display means and bootstrapped nonparametric confidence intervals
# use for example:
s <- summarize(y, llist(month,year), smean.cl.boot)
xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s)
# For each subject use the trapezoidal rule to compute the area under
# the (time,response) curve using the Hmisc trap.rule function
x <- cbind(time=c(1,2,4,7, 1,3,5,10),response=c(1,3,2,4, 1,3,2,4))
subject <- c(rep(1,4),rep(2,4))
trap.rule(x[1:4,1],x[1:4,2])
summarize(x, subject, function(y) trap.rule(y[,1],y[,2]))
# }
# NOT RUN {
# Another approach would be to properly re-shape the mm array below
# This assumes no missing cells. There are many other approaches.
# mApply will do this well while allowing for missing cells.
m <- tapply(y, list(year,month), quantile, probs=c(.25,.5,.75))
mm <- array(unlist(m), dim=c(3,2,12),
dimnames=list(c('lower','median','upper'),c('1997','1998'),
as.character(1:12)))
# aggregate will help but it only allows you to compute one quantile
# at a time; see also the Hmisc mApply function
dframe <- aggregate(y, list(Year=year,Month=month), quantile, probs=.5)
# Compute expected life length by race assuming an exponential
# distribution - can also use summarize
g <- function(y) { # computations for one race group
futime <- y[,1]; event <- y[,2]
sum(futime)/sum(event) # assume event=1 for death, 0=alive
}
mApply(cbind(followup.time, death), race, g)
# To run mApply on a data frame:
xn <- asNumericMatrix(x)
m <- mApply(xn, race, h)
# Here assume h is a function that returns a matrix similar to x
matrix2dataFrame(m)
# Get stratified weighted means
g <- function(y) wtd.mean(y[,1],y[,2])
summarize(cbind(y, wts), llist(sex,race), g, stat.name='y')
mApply(cbind(y,wts), llist(sex,race), g)
# Compare speed of mApply vs. by for computing
d <- data.frame(sex=sample(c('female','male'),100000,TRUE),
country=sample(letters,100000,TRUE),
y1=runif(100000), y2=runif(100000))
g <- function(x) {
y <- c(median(x[,'y1']-x[,'y2']),
med.sum =median(x[,'y1']+x[,'y2']))
names(y) <- c('med.diff','med.sum')
y
}
system.time(by(d, llist(sex=d$sex,country=d$country), g))
system.time({
x <- asNumericMatrix(d)
a <- subsAttr(d)
m <- mApply(x, llist(sex=d$sex,country=d$country), g)
})
system.time({
x <- asNumericMatrix(d)
summarize(x, llist(sex=d$sex, country=d$country), g)
})
# An example where each subject has one record per diagnosis but sex of
# subject is duplicated for all the rows a subject has. Get the cross-
# classified frequencies of diagnosis (dx) by sex and plot the results
# with a dot plot
count <- rep(1,length(dx))
d <- summarize(count, llist(dx,sex), sum)
Dotplot(dx ~ count | sex, data=d)
# }
# NOT RUN {
d <- list(x=1:10, a=factor(rep(c('a','b'), 5)),
b=structure(letters[1:10], label='label for b'),
d=c(rep(TRUE,9), FALSE), f=pi*(1 : 10))
x <- asNumericMatrix(d)
attr(x, 'origAttributes')
matrix2dataFrame(x)
detach('dfr')
# Run summarize on a matrix to get column means
x <- c(1:19,NA)
y <- 101:120
z <- cbind(x, y)
g <- c(rep(1, 10), rep(2, 10))
summarize(z, g, colMeans, na.rm=TRUE, stat.name='x')
# Also works on an all numeric data frame
summarize(as.data.frame(z), g, colMeans, na.rm=TRUE, stat.name='x')
# }
Run the code above in your browser using DataLab