
Reduced printing method for class BsProb
lists. Prints
posterior probabilities of factors and models from Bayesian screening
procedure.
# S3 method for BsProb
summary(object, nMod = 10, digits = 3, ...)
list. BsProb
class list. Output list of BsProb
function.
integer. Number of the top ranked models to print.
integer. Significant digits to use.
additional arguments passed to summary
generic function.
The function prints out the marginal factors and models posterior probabilities. Returns invisible list with the components:
Numeric vector with basic calculation information.
Data frame with the marginal posterior factor probabilities.
Data frame with the models posterior probabilities.
Box, G. E. P and R. D. Meyer (1986). "An Analysis for Unreplicated Fractional Factorials". Technometrics. Vol. 28. No. 1. pp. 11--18.
Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94--105.
# NOT RUN {
library(BsMD)
data(BM86.data,package="BsMD")
X <- as.matrix(BM86.data[,1:15])
y <- BM86.data["y1"]
# Using prior probability of p = 0.20, and k = 10 (gamma = 2.49)
drillAdvance.BsProb <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.20, g = 2.49, ng = 1, nMod = 10)
plot(drillAdvance.BsProb)
summary(drillAdvance.BsProb)
# Using prior probability of p = 0.20, and a 5 <= k <= 15 (1.22 <= gamma <= 3.74)
drillAdvance.BsProbG <- BsProb(X = X, y = y, blk = 0, mFac = 15, mInt = 1,
p = 0.25, g = c(1.22, 3.74), ng = 3, nMod = 10)
plot(drillAdvance.BsProbG)
summary(drillAdvance.BsProbG)
# }
Run the code above in your browser using DataLab