Obtain and print the summary, (fixed effects) coefficients (coef)
and credible interval (confint) for an object of class 'JointAI'.
# S3 method for JointAI
summary(
object,
start = NULL,
end = NULL,
thin = NULL,
quantiles = c(0.025, 0.975),
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)# S3 method for summary.JointAI
print(x, digits = max(3, .Options$digits - 4), ...)
# S3 method for JointAI
coef(
object,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)
# S3 method for JointAI
confint(
object,
parm = NULL,
level = 0.95,
quantiles = NULL,
start = NULL,
end = NULL,
thin = NULL,
subset = NULL,
exclude_chains = NULL,
warn = TRUE,
mess = TRUE,
...
)
# S3 method for JointAI
print(x, digits = max(4, getOption("digits") - 4), ...)
object inheriting from class 'JointAI'
the first iteration of interest (see window.mcmc)
the last iteration of interest (see window.mcmc)
thinning interval (see window.mcmc)
posterior quantiles
subset of parameters/variables/nodes (columns in the MCMC sample).
Uses the same logic as the argument monitor_params in
*_imp.
optional vector of the index numbers of chains that should be excluded
logical; should warnings be given? Default is
TRUE. (Note: this applies only to warnings
given directly by JointAI.)
logical; should messages be given? Default is
TRUE. (Note: this applies only to messages
given directly by JointAI.)
currently not used
an object of class summary.JointAI or JointAI
minimal number of significant digits, see
print.default.
same as subset
confidence level (default is 0.95)
The model fitting functions lm_imp,
glm_imp, clm_imp, lme_imp,
glme_imp, survreg_imp and coxph_imp,
and the vignette
Parameter Selection
for examples how to specify the parameter subset.
# NOT RUN {
mod1 <- lm_imp(y ~ C1 + C2 + M2, data = wideDF, n.iter = 100)
summary(mod1)
coef(mod1)
confint(mod1)
# }
Run the code above in your browser using DataLab