Learn R Programming

RJaCGH (version 1.1.1)

summary.RJaCGH: Summarizing RJaCGH models

Description

'summary' method for objects of class 'RJaCGH', 'RJaCGH.Chrom', 'RJaCGH.genome' and 'RJaCGH.array'.

Usage

summary.RJaCGH(object, k = NULL, point.estimator = "median", ...)
## S3 method for class 'RJaCGH.Chrom':
summary(object, point.estimator="median", ...)
## S3 method for class 'RJaCGH.genome':
summary(object, k=NULL, point.estimator="median", ...)
## S3 method for class 'RJaCGH.array':
summary(object, point.estimator="median", ...)

Arguments

object
any of RJaCGH, RJaCGH.Chrom, RJaCGH.genome, RJaCGH.array objects
k
Model to summarize (i.e., number of hidden states). If NULL, the most visited is taken.
point.estimator
Type of point estimator for mu, sigma.2 and beta. It can be "mean", "median" or "mode".
...
Additional arguments passed to summary.

Value

  • yy values
  • xx values (distances between genes)
  • muPoint estimator of mu
  • sigma.2Point estimator of sigma.2
  • betaPoint estimator of beta

Details

Depending of the type of object, a list with contains sublists can be returned, similarly to RJaCGH and similar objects of the family. The point estimator "mode" is simply the max value obtained in a kernel density estimation through the function density

References

Oscar M. Rueda and Ramon Diaz Uriarte. A flexible, accurate and extensible statistical method for detecting genomic copy-number changes. http://biostats.bepress.com/cobra/ps/art9/. {http://biostats.bepress.com/cobra/ps/art9/}.

See Also

RJaCGH, states, model.averaging, plot.RJaCGH, trace.plot, gelman.brooks.plot, collapseChain

Examples

Run this code
y <- c(rnorm(100, 0, 1), rnorm(10, -3, 1), rnorm(20, 3, 1), rnorm(100,
0, 1))
Pos <- sample(x=1:500, size=230, replace=TRUE)
Pos <- cumsum(Pos)
Chrom <- rep(1:23, rep(10, 23))
jp <- list(sigma.tau.mu=rep(0.5, 5), sigma.tau.sigma.2=rep(0.3, 5),
sigma.tau.beta=rep(0.7, 5), tau.split.mu=0.5, tau.split.beta=0.5)
fit.chrom <- RJaCGH(y=y, Pos=Pos, Chrom=Chrom, model="Chrom",
burnin=10, TOT=100, jump.parameters=jp, k.max = 5)
summary(fit.chrom)

Run the code above in your browser using DataLab