Learn R Programming

robustbase (version 0.5-0-1)

summary.lmrob: Summary Method for "lmrob" Objects

Description

Summary method for Robject of class "lmrob" and print method for the summary object. Further, methods fitted(), residuals() or weights() work (via the default methods), and predict(), vcov(), model.matrix() have explicitly defined lmrob methods.

Usage

## S3 method for class 'lmrob':
summary(object, correlation = FALSE,
        symbolic.cor = FALSE, \dots)
## S3 method for class 'summary.lmrob':
print(x, digits = max(3, getOption("digits") - 3),
      symbolic.cor= x$symbolic.cor,
      signif.stars = getOption("show.signif.stars"), ...)

## S3 method for class 'lmrob':
vcov(object, \dots)
## S3 method for class 'lmrob':
model.matrix(object, \dots)

## S3 method for class 'lmrob':
predict(object, newdata = NULL, scale = NULL, \dots)

Arguments

object
an Robject of class lmrob, typically created by lmrob.
correlation
logical variable indicating whether to compute the correlation matrix of the estimated coefficients.
symbolic.cor
logical indicating whether to use symbols to display the above correlation matrix.
x
an Robject of class summary.lmrob, typically resulting from summary(lmrob(..),..).
digits
number of digits for printing, see digits in options.
signif.stars
logical variable indicating whether to use stars to display different levels of significance in the individual t-tests.
newdata
data.frame with new data values at which prediction should be done; see predict.
scale
scale (estimate) to be used; see predict.lm.
...
potentially more arguments passed to methods.

See Also

lmrob, summary.lm, print, summary.

Examples

Run this code
mod1 <- lmrob(stack.loss ~ ., data = stackloss)
sa <- summary(mod1)  # calls summary.lmrob(....)
sa                   # dispatches to call print.summary.lmrob(....)

## correlation between estimated coefficients:
cov2cor(vcov(mod1))

cbind(fit = fitted(mod1), resid = residuals(mod1),
      wgts= weights(mod1),
      predict(mod1, interval="prediction"))

data(heart)
sm2 <- summary( m2 <- lmrob(clength ~ ., data = heart) )
sm2

Run the code above in your browser using DataLab