Summary method for R object of class "lmrob"
and
print
method for the summary object.
Further, methods fitted()
, residuals()
work (via the default methods), and
predict()
(see predict.lmrob
,
vcov()
, weights()
(see
weights.lmrob
), model.matrix()
,
confint()
, dummy.coef()
,
hatvalues()
, etc.,
have explicitly defined lmrob
methods. .lmrob.hat()
is
the lower level “work horse” of the hatvalues()
method.
# S3 method for lmrob
summary(object, correlation = FALSE,
symbolic.cor = FALSE, …)
# S3 method for summary.lmrob
print(x, digits = max(3, getOption("digits") - 3),
symbolic.cor= x$symbolic.cor,
signif.stars = getOption("show.signif.stars"),
showAlgo = TRUE, …)# S3 method for lmrob
vcov(object, cov = object$control$cov, complete = TRUE, …)
# S3 method for lmrob
model.matrix(object, …)
an R object of class lmrob
, typically created by
lmrob
.
logical variable indicating whether to compute the correlation matrix of the estimated coefficients.
logical indicating whether to use symbols to display the above correlation matrix.
an R object of class summary.lmrob
, typically
resulting from summary(lmrob(..),..)
.
number of digits for printing, see digits
in
options
.
logical variable indicating whether to use stars to display different levels of significance in the individual t-tests.
optional logical
indicating if the
algorithmic parameters (as mostly inside the control
part)
should be shown.
covariance estimation function to use, a
function
or character string naming the
function; robustbase currently provides ".vcov.w"
and
".vcov.avar1"
, see Details of lmrob
.
Particularly useful when object
is the result of
lmrob(.., cov = "none")
, where
object$cov <- vcov(object, cov = ".vcov.w")
allows to update the fitted object.
(mainly for R >= 3.5.0
:)
logical
indicating if the
full variance-covariance matrix should be returned also in case of
an over-determined system where some coefficients are undefined and
coef(.)
contains NA
s correspondingly. When
complete = TRUE
, vcov()
is compatible with
coef()
also in this singular case.
potentially more arguments passed to methods.
summary(object)
returns an object of S3 class
"summary.lmrob"
, basically a list
with components
"call", "terms", "residuals", "scale", "rweights", "converged",
"iter", "control" all copied from object
, and further
components, partly for compatibility with summary.lm
,
a matrix
with columns "Estimate"
,
"Std. Error"
, "t value"
, and "PR(>|t|)"
, where
"Estimate" is identical to coef(object)
. Note that
coef(<summary.obj>)
is slightly preferred to access
this matrix.
degrees of freedom, in an lm
compatible way.
identical to sigma(object)
.
..
derived from object$cov
.
robust “R squared” or
an adjusted R squared, see r.squared
.
Renaud, O. and Victoria-Feser, M.-P. (2010). A robust coefficient of determination for regression, Journal of Statistical Planning and Inference 140, 1852-1862.
lmrob
, predict.lmrob
,
weights.lmrob
, summary.lm
,
print
, summary
.
# NOT RUN {
mod1 <- lmrob(stack.loss ~ ., data = stackloss)
sa <- summary(mod1) # calls summary.lmrob(....)
sa # dispatches to call print.summary.lmrob(....)
## correlation between estimated coefficients:
cov2cor(vcov(mod1))
cbind(fit = fitted(mod1), resid = residuals(mod1),
wgts= weights(mod1, type="robustness"),
predict(mod1, interval="prediction"))
data(heart)
sm2 <- summary( m2 <- lmrob(clength ~ ., data = heart) )
sm2
# }
Run the code above in your browser using DataLab