Last chance! 50% off unlimited learning
Sale ends in
ltmle
or summary.ltmle
objects.## S3 method for class 'ltmle':
summary(object, estimator=ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'ltmleEffectMeasures':
summary(object, estimator=ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'ltmleMSM':
summary(object, estimator=ifelse(object$gcomp, "gcomp", "tmle"), ...)
## S3 method for class 'summary.ltmle':
print(x, ...)
## S3 method for class 'summary.ltmleMSM':
print(x, digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'summary.ltmleEffectMeasures':
print(x, ...)
summary.ltmle
" or "summary.ltmleMSM
" or "ltmleEffectMeasures
", usually a result of a call to summary.ltmle
or
TRUE
, significance stars are printed for each coefficient.summary.ltmle
returns an object of class "summary.ltmle
", a list with componentsobject
estimate
- the parameter estimate of$E[Y_d]$std.dev
- estimated standard deviation of parameterp.value
- two-sided p-valueCI
- vector of length 2 with 95 percent confidence intervalltmle
for object
estimator
input argumentsummary.ltmleEffectMeasures
returns an object of class "summary.ltmleEffectMeasures
", a list with same components as summary.ltmle
above, but also includes:treatment
in summary.ltmle
above
treatment
- corresponds to the first in the listabar
(orrule
) passed toltmle
control
- corresponds to the second in the listabar
(orrule
) passed toltmle
ATE
- average treatment effectRR
- relative riskOR
- odds ratiosummary.ltmleMSM
returns an object of class "summary.ltmleMSM
", a matrix with rows for each MSM parameter and columns for the point estimate, standard error, 2.5percent confidence interval, 97.5percent confidence interval, and p-value.summary.ltmle
returns the parameter value of the estimator, the estimated variance, a 95 percent confidence interval, and a p-value.summary.ltmleEffectMeasures
returns the additive treatment effect for each of the two objects in the abar
list passed to ltmle
. Relative risk, and odds ratio are also returned, along with the variance, confidence interval, and p-value for each.
summary.ltmleMSM
returns a matrix of MSM parameter estimates.
ltmle
, summary
rexpit <- function(x) rbinom(n=length(x), size=1, prob=plogis(x))
# Compare the expected outcomes under two counterfactual plans:
# Treatment plan: set A1 to 1 if W > 0, set A2 to 1 if W > 1.5, always set A3 to 1
# Control plan: always set A1, A2, and A3 to 0
W <- rnorm(1000)
A1 <- rexpit(W)
A2 <- rexpit(W + 2*A1)
A3 <- rexpit(2*A1 - A2)
Y <- rexpit(W - A1 + 0.5*A2 + 2*A3)
data <- data.frame(W, A1, A2, A3, Y)
treatment <- cbind(W > 0, W > 1.5, 1)
control <- matrix(0, nrow=1000, ncol=3)
result <- ltmle(data, Anodes = c("A1", "A2", "A3"), Ynodes = "Y", abar = list(treatment, control))
print(summary(result))
## For examples of summary.ltmle and summary.ltmleMSM, see example(ltmle)
Run the code above in your browser using DataLab