Learn R Programming

pgam (version 0.4.5)

summary.pgam: Summary output

Description

Output of model information

Usage

## S3 method for class 'pgam':
summary(object, smo.test = FALSE, ...)

Arguments

object
object of class pgam holding the fitted model
smo.test
Approximate significance test of smoothing terms. It can take long, so default is FALSE
...
further arguments passed to method

Value

  • List containing all the information about the model fitted.

Details

Hypothesis tests of coefficients are based o t distribution. Significance tests of smooth terms are approximate for model selection purpose only. Be very careful about the later.

References

Harvey, A. C., Fernandes, C. (1989) Time series models for count data or qualitative observations. Journal of Business and Economic Statistics, 7(4):407--417

Campos, E. L., De Leon, A. C. M. P., Fernandes, C. A. C. (2003) Modelo Poisson-Gama para Séries Temporais de Dados de Contagem - Teoria e Aplicações. 10a ESTE - Escola de Séries Temporais e Econometria

Junger, W. L. (2004) Modelo Poisson-Gama Semi-Paramérico: Uma Abordagem de Penalização por Rugosidade. MSc Thesis. Rio de Janeiro, PUC-Rio, Departamento de Engenharia Elétrica

Green, P. J., Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Models: a roughness penalty approach. Chapman and Hall, London

Hastie, T. J., Tibshirani, R. J.(1990) Generalized Additive Models. Chapman and Hall, London

McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, 2nd edition, London

Pierce, D. A., Schafer, D. W. (1986) Residuals in generalized linear models. Journal of the American Statistical Association, 81(396),977-986

See Also

pgam, predict.pgam

Examples

Run this code
library(pgam)
data(aihrio)
attach(aihrio)
form <- ITRESP5~f(WEEK)+HOLIDAYS+rain+PM+g(tmpmax,7)+g(wet,3)
m <- pgam(form,aihrio,omega=.8,beta=.01,maxit=1e2,eps=1e-4,optim.method="BFGS")

summary(m)

Run the code above in your browser using DataLab