scam
object produced by scam()
and produces various useful
summaries from it. The same code as in summary.gam
of the mgcv
package is used here with slight modifications
to accept the exponentiated parameters of the monotone smooth terms and the corresponding covariance matrix.## S3 method for class 'scam':
summary(object, dispersion=NULL, freq=FALSE, alpha=0,...)
## S3 method for class 'summary.scam':
print(x,digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),...)
monogam
object as produced by scam()
.summary.scam
object produced by summary.scam()
.NULL
to use estimate or
default (e.g. 1 for Poisson).summary.scam
produces the same list of summary information for a fitted scam
object as in the
unconstrained case summary.gam
except for the last element BFGS termination condition
.p.coeff
's divided by their standard errors.freq=TRUE
), divided
by scale parameter.freq=TRUE
).bfgs_gcv.ubre
for details)scam
## simulating data...
n <- 200
set.seed(1)
x1 <- runif(n)*6-3
f1 <- 3*exp(-x1^2) # unconstrained smooth term
x2 <- runif(n)*4-1;
f2 <- exp(4*x2)/(1+exp(4*x2)) # monotone increasing smooth
x3 <- runif(n)*5;
f3 <- -log(x3)/5 # monotone decreasing smooth
f <- f1+f2+f3
y <- f + rnorm(n)*0.3
dat <- data.frame(x1=x1,x2=x2,x3=x3,y=y)
## fit model ...
b <- scam(y~s(x1,k=15,bs="cr",m=2)+s(x2,k=30,bs="mpi",m=2)+s(x3,k=30,bs="mpd",m=2),
data=dat)
summary(b)
plot(b,pages=1)
Run the code above in your browser using DataLab