Learn R Programming

iqLearn (version 1.5)

summary.value: Estimate plug-in value

Description

Output plug-in value estimates of treatment regimes based on the estimated IQ-learning parameters.

Usage

# S3 method for value
summary(object, ...)

Arguments

object

object of type value

...

other arguments to be passed to summary()

Value

None.

Details

Can be used to print out the estimated plug-in values of non-dynamic regimes and any proposed regime, possibly estimated from IQ- or Q-learning.

References

Linn, K. A., Laber, E. B., Stefanski, L. A. (2015) "iqLearn: Interactive Q-Learning in R", Journal of Statistical Software, 64(1), 1--25.

Laber, E. B., Linn, K. A., and Stefanski, L. A. (2014) "Interactive model building for Q-learning", Biometrika, 101(4), 831-847.

See Also

learnIQ2, learnIQ1

Examples

Run this code
# NOT RUN {
## load in two-stage BMI data
data (bmiData)
bmiData$A1[which (bmiData$A1=="MR")] = 1
bmiData$A1[which (bmiData$A1=="CD")] = -1
bmiData$A2[which (bmiData$A2=="MR")] = 1
bmiData$A2[which (bmiData$A2=="CD")] = -1
bmiData$A1 = as.numeric (bmiData$A1)
bmiData$A2 = as.numeric (bmiData$A2)
s1vars = bmiData[,1:4]
s2vars = bmiData[,c (1, 3, 5)]
a1 = bmiData[,7]
a2 = bmiData[,8]
## define response y to be the negative 12 month change in BMI from
## baseline 
y = -(bmiData[,6] - bmiData[,4])/bmiData[,4]
## second-stage regression
fitIQ2 = learnIQ2 (y ~ gender + parent_BMI + month4_BMI +
  A2*(parent_BMI + month4_BMI), data=bmiData, "A2", c("parent_BMI",
                                  "month4_BMI"))
## model conditional expected value of main effect term
fitIQ1main = learnIQ1main (~ gender + race + parent_BMI + baseline_BMI
  + A1*(gender + parent_BMI), data=bmiData, "A1", c ("gender",
                                "parent_BMI"), fitIQ2)
## model conditional mean of contrast function
fitIQ1cm = learnIQ1cm (~ gender + race + parent_BMI + baseline_BMI +
  A1*(gender + parent_BMI + baseline_BMI), data=bmiData, "A1", c
  ("gender", "parent_BMI", "baseline_BMI"), fitIQ2)
## variance modeling
fitIQ1var = learnIQ1var (~ gender + race + parent_BMI + baseline_BMI +
  A1*(parent_BMI), data=bmiData, "A1", c ("parent_BMI"), "hetero",
  fitIQ1cm)
## get optimal first-stage txts
fitIQLearn = learnIQ1 (fitIQ1main, fitIQ1cm, fitIQ1var, "nonpar")
estVal = value (fitIQLearn$optA1, fitIQ2$optA2, y, a1, a2)
summary (estVal)
# }

Run the code above in your browser using DataLab