# NOT RUN {
# }
# NOT RUN {
## example of PLS-PM in alumni satisfaction
# select manifest variables
data.fib <-fibtele[,12:35]
# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)
# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)
# re-ordering those segmentation variables with ordinal scale
seg.fib= fibtele[,2:11]
seg.fib$Age = factor(seg.fib$Age, ordered=T)
seg.fib$Salary = factor(seg.fib$Salary,
levels=c("<18k","25k","35k","45k",">45k"), ordered=T)
seg.fib$Accgrade = factor(seg.fib$Accgrade,
levels=c("accnote<7","7-8accnote","accnote>8"), ordered=T)
seg.fib$Grade = factor(seg.fib$Grade,
levels=c("<6.5note","6.5-7note","7-7.5note",">7.5note"), ordered=T)
# Pathmox Analysis
fib.pathmox=pls.pathmox(data.fib, inner.fib, outer.fib, modes.fib,SVAR=seg.fib,signif=0.05,
deep=2,size=0.2,n.node=20)
summary(fib.pathmox)
# }
# NOT RUN {
library(genpathmox)
data(fibtele)
# select manifest variables
data.fib <-fibtele[1:50,12:35]
# define inner model matrix
Image = rep(0,5)
Qual.spec = rep(0,5)
Qual.gen = rep(0,5)
Value = c(1,1,1,0,0)
Satis = c(1,1,1,1,0)
inner.fib = rbind(Image,Qual.spec, Qual.gen, Value, Satis)
colnames(inner.fib) = rownames(inner.fib)
# blocks of indicators (outer model)
outer.fib = list(1:8,9:11,12:16,17:20,21:24)
modes.fib = rep("A", 5)
# re-ordering those segmentation variables with ordinal scale
seg.fib = fibtele[1:50,c(2,7)]
seg.fib$Salary = factor(seg.fib$Salary,
levels=c("<18k","25k","35k","45k",">45k"), ordered=TRUE)
# Pathmox Analysis
fib.pathmox = pls.pathmox(data.fib, inner.fib, outer.fib, modes.fib,SVAR=seg.fib,signif=0.5,
deep=1,size=0.01,n.node=10)
summary(fib.pathmox)
# }
Run the code above in your browser using DataLab